RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Morphological, Physiological and Biochemical Responses of Gerbera Cultivars to Heat Stress

        Wen Chen,Xiaoyun Zhu,Weiqing Han,Zheng Wu,Qixian Lai 한국원예학회 2016 원예과학기술지 Vol.34 No.1

        Heat stress is an agricultural problem for Gerbera jamesonii, and it often causes poor seedling growth, reduced flower yield and undesirable ornamental characteristics of flowers. However, little is known about the effect of heat stress on the morphological, physiological and biochemical characteristics of gerbera plants. Here, the responses of six cultivars of Gerbera jamesonii to heat stress were investigated. Under a 1-d heat treatment at 45°C, the leaves of gerbera cultivars showed yellowing, wilting, drying and death to varying degrees. The heat treatment also resulted in increased electrical conductivity, decreased soluble protein and chlorophyll contents, and the accumulation of malondialdehyde (MDA) and proline in leaves. Moreover, heat tolerance differed among the six tested gerbera cultivars. Our results demonstrated that among the six gerbera cultivars, ‘Meihongheixin’ is a heat-resistant cultivar, whereas ‘Beijixing’ is a heatsensitive one. ‘Shijihong’ and ‘Linglong’ are relatively heat-resistant cultivars, and ‘Dadifen’ and ‘Taiyangfengbao’ are relatively heat sensitive.

      • SCIESCOPUSKCI등재

        Morphological, Physiological and Biochemical Responses of Gerbera Cultivars to Heat Stress

        Chen, Wen,Zhu, Xiaoyun,Han, Weiqing,Wu, Zheng,Lai, Qixian Korean Society of Horticultural Science 2016 원예과학기술지 Vol.34 No.1

        Heat stress is an agricultural problem for Gerbera jamesonii, and it often causes poor seedling growth, reduced flower yield and undesirable ornamental characteristics of flowers. However, little is known about the effect of heat stress on the morphological, physiological and biochemical characteristics of gerbera plants. Here, the responses of six cultivars of Gerbera jamesonii to heat stress were investigated. Under a 1-d heat treatment at $45^{\circ}C$, the leaves of gerbera cultivars showed yellowing, wilting, drying and death to varying degrees. The heat treatment also resulted in increased electrical conductivity, decreased soluble protein and chlorophyll contents, and the accumulation of malondialdehyde (MDA) and proline in leaves. Moreover, heat tolerance differed among the six tested gerbera cultivars. Our results demonstrated that among the six gerbera cultivars, 'Meihongheixin' is a heat-resistant cultivar, whereas 'Beijixing' is a heat-sensitive one. 'Shijihong' and 'Linglong' are relatively heat-resistant cultivars, and 'Dadifen' and 'Taiyangfengbao' are relatively heat sensitive.

      • KCI등재

        Modified beluga whale optimization with multi-strategies for solving engineering problems

        Jia Heming,Wen Qixian,Wu Di,Wang Zhuo,WANG YUHAO,Wen Changsheng,Abualigah Laith 한국CDE학회 2023 Journal of computational design and engineering Vol.10 No.6

        The beluga whale optimization (BWO) algorithm is a recently proposed metaheuristic optimization algorithm that simulates three behaviors: beluga whales interacting in pairs to perform mirror swimming, population sharing information to cooperate in predation, and whale fall. However, the optimization performance of the BWO algorithm still needs to be improved to enhance its practicality. This paper proposes a modified beluga whale optimization (MBWO) with a multi-strategy. It was inspired by beluga whales’ two behaviors: group gathering for foraging and searching for new habitats in long-distance migration. This paper proposes a group aggregation strategy (GAs) and a migration strategy (Ms). The GAs can improve the local development ability of the algorithm and accelerate the overall rate of convergence through the group aggregation fine search; the Ms randomly moves towards the periphery of the population, enhancing the ability to jump out of local optima. In order to verify the optimization ability of MBWO, this article conducted comprehensive testing on MBWO using 23 benchmark functions, IEEE CEC2014, and IEEE CEC2021. The experimental results indicate that MBWO has a strong optimization ability. This paper also tests MBWO’s ability to solve practical engineering optimization problems through five practical engineering problems. The final results prove the effectiveness of MBWO in solving practical engineering optimization problems.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼