RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Adsorption of heavy metal ions in ternary systems onto Fe(OH)3

        Muhammad Waseem,Syed Mustafa,Muhammad Irshad,Khizar Hussain Shah,Umer Rashid,Wajid Rehman 한국화학공학회 2013 Korean Journal of Chemical Engineering Vol.30 No.12

        The adsorption behavior of amorphous Fe(OH)3 has been studied in multicomponent metal system. The metal ions uptake in the ternary system is lower than in the single system, suggesting that certain sites on the surface of the solid are blocked due to competition. The selectivity trend in the ternary system is observed to be Ni2+>Zn2+>Cd2+ which is, however, lost with increase in the temperature of the aqueous solution. Further, the observed selectivity trend is neither related to electronegativity of the metal ions nor to the pH of the hydrolysis, but has been found dependent on charge to radius ratio. The metal ions adsorption is found to increase with pH, while the converse is true with the rise in temperature. The uptake of metal ions data has been interpreted in terms of stoichiometry, binding constants and adsorption capacities. The negative values of ΔG show that uptake of metal ions is favored at lower temperatures,indicating that the adsorption mechanism essentially remains ion exchange in nature.

      • KCI등재

        Additively manufactured nano-mechanical energy harvesting systems: advancements, potential applications, challenges and future perspectives

        Ahmed Ammar,Azam Ali,Wang Yanen,Zhang Zutao,Li Ning,Jia Changyuan,Mushtaq Ray Tahir,Rehman Mudassar,Gueye Thierno,Shahid Muhammad Bilal,Basit Ali Wajid 나노기술연구협의회 2021 Nano Convergence Vol.8 No.37

        Additively manufactured nano-MEH systems are widely used to harvest energy from renewable and sustainable energy sources such as wind, ocean, sunlight, raindrops, and ambient vibrations. A comprehensive study focusing on in-depth technology evolution, applications, problems, and future trends of specifically 3D printed nano-MEH systems with an energy point of view is rarely conducted. Therefore, this paper looks into the state-of-the-art technologies, energy harvesting sources/methods, performance, implementations, emerging applications, potential challenges, and future perspectives of additively manufactured nano-mechanical energy harvesting (3DP-NMEH) systems. The prevailing challenges concerning renewable energy harvesting capacities, optimal energy scavenging, power management, material functionalization, sustainable prototyping strategies, new materials, commercialization, and hybridization are discussed. A novel solution is proposed for renewable energy generation and medicinal purposes based on the sustainable utilization of recyclable municipal and medical waste generated during the COVID-19 pandemic. Finally, recommendations for future research are presented concerning the cutting-edge issues hurdling the optimal exploitation of renewable energy resources through NMEHs. China and the USA are the most significant leading forces in enhancing 3DP-NMEH technology, with more than 75% contributions collectively. The reported output energy capacities of additively manufactured nano-MEH systems were 0.5–32 mW, 0.0002–45.6 mW, and 0.3–4.67 mW for electromagnetic, piezoelectric, and triboelectric nanogenerators, respectively. The optimal strategies and techniques to enhance these energy capacities are compiled in this paper. Graphical Abstract

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼