RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface

        Norton, James J. S.,Lee, Dong Sup,Lee, Jung Woo,Lee, Woosik,Kwon, Ohjin,Won, Phillip,Jung, Sung-Young,Cheng, Huanyu,Jeong, Jae-Woong,Akce, Abdullah,Umunna, Stephen,Na, Ilyoun,Kwon, Yong Ho,Wang, Xiao- National Academy of Sciences 2015 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF Vol.112 No.13

        <P><B>Significance</B></P><P>Conventional electroencephalogram (EEG) recording systems, particularly the hardware components that form the physical interfaces to the head, have inherent drawbacks that limit the widespread use of continuous EEG measurements for medical diagnostics, sleep monitoring, and cognitive control. Here we introduce soft electronic constructs designed to intimately conform to the complex surface topology of the auricle and the mastoid, to provide long-term, high-fidelity recording of EEG data. Systematic studies reveal key aspects of the extreme levels of bending and stretching that are involved in mounting on these surfaces. Examples in persistent brain–computer interfaces, including text spellers with steady-state visually evoked potentials and event-related potentials, with viable operation over periods of weeks demonstrate important advances over alternative brain–computer interface technologies.</P><P>Recent advances in electrodes for noninvasive recording of electroencephalograms expand opportunities collecting such data for diagnosis of neurological disorders and brain–computer interfaces. Existing technologies, however, cannot be used effectively in continuous, uninterrupted modes for more than a few days due to irritation and irreversible degradation in the electrical and mechanical properties of the skin interface. Here we introduce a soft, foldable collection of electrodes in open, fractal mesh geometries that can mount directly and chronically on the complex surface topology of the auricle and the mastoid, to provide high-fidelity and long-term capture of electroencephalograms in ways that avoid any significant thermal, electrical, or mechanical loading of the skin. Experimental and computational studies establish the fundamental aspects of the bending and stretching mechanics that enable this type of intimate integration on the highly irregular and textured surfaces of the auricle. Cell level tests and thermal imaging studies establish the biocompatibility and wearability of such systems, with examples of high-quality measurements over periods of 2 wk with devices that remain mounted throughout daily activities including vigorous exercise, swimming, sleeping, and bathing. Demonstrations include a text speller with a steady-state visually evoked potential-based brain–computer interface and elicitation of an event-related potential (P300 wave).</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼