RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Stiffness design and mechanical performance analysis of transverse leaf spring suspension

        Bao Zhang,Hongnan Wang,Zhi Li,Tangyun Zhang 대한기계학회 2023 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.37 No.3

        Suspension stiffness affects vehicle comfort and handling performance. The stiffness optimization of the transverse leaf spring suspension can be achieved by adjusting the distance between the two central installation positions of the leaf spring. This method can avoid changing the structure of the leaf spring, reduce the difficulty of product development, and shorten the product development cycle, so this type of suspension has high engineering application value. In the paper, a finite element model of the transverse leaf spring is established, and the characteristics of the stiffness, deformation and stress of the leaf spring with the distance are studied. According to the objectives of suspension dynamic deflection, body roll angle and leaf spring reliability, the distance matching design is carried out, and the design scheme is experimentally verified. The research shows that the stiffness of the leaf spring under the opposite direction loading condition is greater than that of the same direction loading condition, and the difference between the two data increases with the increase of the distance. When the distance is 800 mm, the stiffness of the suspension is 102.1 N/mm under the same loading and 220.4 N/mm under reverse loading, the maximum stress is 1487 MPa, the dynamic deflection 39.2 mm, and the maximum body roll angle is less than 6.0°. All of the above indicators meet the design requirements. The research results provide theoretical basis and reference for the design of a transverse leaf spring suspension.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼