RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Ultrasound visibility of regional anesthesia catheters: an in vitro study

        Junji Takatani,,Naozumi Takeshima,Kentaro Okuda,Tetsuya Uchino,Takayuki Noguchi 대한마취통증의학회 2012 Korean Journal of Anesthesiology Vol.63 No.1

        Background: Ultrasound subjective visibility of in-plane needles is correlated with the intensity difference between the needle surface and the background. Regional anesthesia catheters are difficult to visualize by an ultrasound. In the present study, we investigated the ultrasound visibility of the catheters. Methods: Six catheters were placed at 0o and 30o relative to and at a depth of 1 cm below the pork phantom surface. Ultrasound images of in-plane catheters were evaluated, subjectively and objectively. Outer and inner objective visibilities were defined as the difference in the mean pixel intensity between the catheter surface and adjacent background, and between the surface and the center of the catheter, respectively. Evaluations were made based on the portion of the catheters. A P value < 0.05 was considered significant. Results: Subjective visibility was more strongly correlated with the inner objective visibility than with the outer objective visibility at both angles. Metallic 19-gauge catheters were more subjectively visible than the non-metallic 20-gauge catheters at 30o degrees (P < 0.01). Subjective, and outer and inner objective visibility were significantly lower at 30o than at 0o (P < 0.01, P < 0.01, P = 0.02). Perifix ONE at 0o and Perifix FX at 30o were the most visible catheters (P < 0.01 for both). Conclusions: Subjective visibility of catheters can not be evaluated in the same manner as that of the needles. For the best possible visualization, we recommend selecting a catheter with a structure that enhances the dark at the center of catheter, rather than basing the catheter selection on the bore size. Background: Ultrasound subjective visibility of in-plane needles is correlated with the intensity difference between the needle surface and the background. Regional anesthesia catheters are difficult to visualize by an ultrasound. In the present study, we investigated the ultrasound visibility of the catheters. Methods: Six catheters were placed at 0o and 30o relative to and at a depth of 1 cm below the pork phantom surface. Ultrasound images of in-plane catheters were evaluated, subjectively and objectively. Outer and inner objective visibilities were defined as the difference in the mean pixel intensity between the catheter surface and adjacent background, and between the surface and the center of the catheter, respectively. Evaluations were made based on the portion of the catheters. A P value < 0.05 was considered significant. Results: Subjective visibility was more strongly correlated with the inner objective visibility than with the outer objective visibility at both angles. Metallic 19-gauge catheters were more subjectively visible than the non-metallic 20-gauge catheters at 30o degrees (P < 0.01). Subjective, and outer and inner objective visibility were significantly lower at 30o than at 0o (P < 0.01, P < 0.01, P = 0.02). Perifix ONE at 0o and Perifix FX at 30o were the most visible catheters (P < 0.01 for both). Conclusions: Subjective visibility of catheters can not be evaluated in the same manner as that of the needles. For the best possible visualization, we recommend selecting a catheter with a structure that enhances the dark at the center of catheter, rather than basing the catheter selection on the bore size.

      • SCOPUSKCI등재

        Use of Imaging Agent to Determine Postoperative Indwelling Epidural Catheter Position

        ( Tetsuya Uchino ),( Satoshi Hagiwara ),( Hideo Iwasaka ),( Kyosuke Kudo ),( Junji Takatani ),( Akio Mizutani ),( Masahiro Miura ),( Takayuki Noguchi ) 대한통증학회 2010 The Korean Journal of Pain Vol.23 No.4

        Background: Epidural anesthesia is widely used to provide pain relief, whether for surgical anesthesia, postoperative analgesia, treatment of chronic pain, or to facilitate painless childbirth. In many cases, however, the epidural catheter is inserted blindly and the indwelling catheter position is almost always uncertain. Methods: In this study, the loss-of-resistance technique was used and an imaging agent was injected through the indwelling epidural anesthesia catheter to confirm the position of its tip and examine the migration rate. Study subjects were patients scheduled to undergo surgery using general anesthesia combined with epidural anesthesia. Placement of the epidural catheter was confirmed postoperatively by injection of an imaging agent and X-ray imaging. Results: The indwelling epidural catheter was placed between upper thoracic vertebrae (n = 83; incorrect placement, n = 5), lower thoracic vertebrae (n = 123; incorrect placement, n = 5), and lower thoracic vertebra-lumbar vertebra (n = 46; incorrect placement, n = 7). In this study, a relatively high frequency of incorrectly placed epidural catheters using the loss-of-resistance technique was observed, and it was found that incorrect catheter placement resulted in inadequate analgesia during surgery. Conclusions: Although the loss-of-resistance technique is easy and convenient as a method for epidural catheter placement, it frequently results in inadequate placement of epidural catheters. Care should be taken when performing this procedure. (Korean J Pain 2010; 23: 247-253)

      • SCOPUSKCI등재

        Use of Imaging Agent to Determine Postoperative Indwelling Epidural Catheter Position

        Uchino, Tetsuya,Hagiwara, Satoshi,Iwasaka, Hideo,Kudo, Kyosuke,Takatani, Junji,Mizutani, Akio,Miura, Masahiro,Noguchi, Takayuki The Korean Pain Society 2010 The Korean Journal of Pain Vol.23 No.4

        Background: Epidural anesthesia is widely used to provide pain relief, whether for surgical anesthesia, postoperative analgesia, treatment of chronic pain, or to facilitate painless childbirth. In many cases, however, the epidural catheter is inserted blindly and the indwelling catheter position is almost always uncertain. Methods: In this study, the loss-of-resistance technique was used and an imaging agent was injected through the indwelling epidural anesthesia catheter to confirm the position of its tip and examine the migration rate. Study subjects were patients scheduled to undergo surgery using general anesthesia combined with epidural anesthesia. Placement of the epidural catheter was confirmed postoperatively by injection of an imaging agent and X-ray imaging. Results: The indwelling epidural catheter was placed between upper thoracic vertebrae (n = 83; incorrect placement, n = 5), lower thoracic vertebrae (n = 123; incorrect placement, n = 5), and lower thoracic vertebra-lumbar vertebra (n = 46; incorrect placement, n = 7). In this study, a relatively high frequency of incorrectly placed epidural catheters using the loss-of-resistance technique was observed, and it was found that incorrect catheter placement resulted in inadequate analgesia during surgery. Conclusions: Although the loss-of-resistance technique is easy and convenient as a method for epidural catheter placement, it frequently results in inadequate placement of epidural catheters. Care should be taken when performing this procedure.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼