RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Influence of balancing of internal combustion engines on the operating conditions of hydrodynamic bearings

        T. Khatir,M. Bouchetara,M. Djafri,S. Khatir,M. Abdel Wahab 대한기계학회 2017 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.31 No.10

        We studied the influence of balancing internal combustion engines on the performance of hydrodynamic plain bearings. A non-linear approach makes it possible to calculate the forces of pressure generated by the lubricant film. This approach is coupled with a dynamic calculation, which determines the inertia forces of the rod. The counterweight to balance the engine is applied to the heads of rods and not to the crankshaft. We chose three models of connecting rod (rod of an engine in series, rod with partial and rod with complete counterweight). To determine the lubricant pressure field in the bearing, the modified Reynolds equation was solved using the finite difference method, taking into account the boundary conditions of Reynolds. Since the bearing is subjected to a variable load, the mobility method was used to facilitate the resolution of the Reynolds equation. The proposed numerical simulation allowed us to analyze the influence of counterweight applied to the connecting rod head on the variation of the lubricant pressure field, the minimum film thickness, the axial flow and the friction torque in the big end bearing during the operating cycle.

      • KCI등재

        An efficient hybrid TLBO-PSO-ANN for fast damage identification in steel beam structures using IGA

        S. Khatir,T. Khatir,D. Boutchicha,C. Le Thanh,H. Tran-Ngoc,T.Q. Bui,R. Capozucca,M. Abdel Wahab 국제구조공학회 2020 Smart Structures and Systems, An International Jou Vol.25 No.5

        The existence of damages in structures causes changes in the physical properties by reducing the modal parameters. In this paper, we develop a two-stages approach based on normalized Modal Strain Energy Damage Indicator (<i>nMSEDI</i>) for quick applications to predict the location of damage. A two-dimensional IsoGeometric Analysis (2D-IGA), Machine Learning Algorithm (MLA) and optimization techniques are combined to create a new tool. In the first stage, we introduce a modified damage identification technique based on frequencies using <i>nMSEDI</i> to locate the potential of damaged elements. In the second stage, after eliminating the healthy elements, the damage index values from <i>nMSEDI</i> are considered as input in the damage quantification algorithm. The hybrid of Teaching-Learning-Based Optimization (TLBO) with Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) are used along with nMSEDI. The objective of TLBO is to estimate the parameters of PSO-ANN to find a good training based on actual damage and estimated damage. The IGA model is updated using experimental results based on stiffness and mass matrix using the difference between calculated and measured frequencies as objective function. The feasibility and efficiency of nMSEDI-PSO-ANN after finding the best parameters by TLBO are demonstrated through the comparison with nMSEDI-IGA for different scenarios. The result of the analyses indicates that the proposed approach can be used to determine correctly the severity of damage in beam structures.

      • KCI등재

        An efficient approach for model updating of a large-scale cable-stayed bridge using ambient vibration measurements combined with a hybrid metaheuristic search algorithm

        Tran N. Hoa,S. Khatir,G. De Roeck,Nguyen N. Long,Bui T. Thanh,M. Abdel Wahab 국제구조공학회 2020 Smart Structures and Systems, An International Jou Vol.25 No.4

        This paper proposes a novel approach to model updating for a large-scale cable-stayed bridge based on ambient vibration tests coupled with a hybrid metaheuristic search algorithm. Vibration measurements are carried out under excitation sources of passing vehicles and wind. Based on the measured structural dynamic characteristics, a finite element (FE) model is updated. For long-span bridges, ambient vibration test (AVT) is the most effective vibration testing technique because ambient excitation is freely available, whereas a forced vibration test (FVT) requires considerable efforts to install actuators such as shakers to produce measurable responses. Particle swarm optimization (PSO) is a famous metaheuristic algorithm applied successfully in numerous fields over the last decades. However, PSO has big drawbacks that may decrease its efficiency in tackling the optimization problems. A possible drawback of PSO is premature convergence leading to low convergence level, particularly in complicated multi-peak search issues. On the other hand, PSO not only depends crucially on the quality of initial populations, but also it is impossible to improve the quality of new generations. If the positions of initial particles are far from the global best, it may be difficult to seek the best solution. To overcome the drawbacks of PSO, we propose a hybrid algorithm combining GA with an improved PSO (HGAIPSO). Two striking characteristics of HGAIPSO are briefly described as follows: (1) because of possessing crossover and mutation operators, GA is applied to generate the initial elite populations and (2) those populations are then employed to seek the best solution based on the global search capacity of IPSO that can tackle the problem of premature convergence of PSO. The results show that HGAIPSO not only identifies uncertain parameters of the considered bridge accurately, but also outperforms than PSO, improved PSO (IPSO), and a combination of GA and PSO (HGAPSO) in terms of convergence level and accuracy.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼