RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Gene inactivation using the CRISPR/Cas9 system in the nematode Pristionchus pacificus.

        Witte, Hanh,Moreno, Eduardo,R?delsperger, Christian,Kim, Jungeun,Kim, Jin-Soo,Streit, Adrian,Sommer, Ralf J Springer-Verlag 2015 Development genes and evolution Vol.225 No.1

        <P>The diplogastrid nematode Pristionchus pacificus is a nematode model system for comparative studies to Caenorhabditis elegans and integrative evolutionary biology aiming for interdisciplinary approaches of evo-devo, population genetics, and ecology. For this, fieldwork can be combined with laboratory studies, and P. pacificus has a well-developed methodological toolkit of forward genetics, whole genome sequencing, DNA-mediated transformation, and various -omics platforms. Here, we establish CRISPR/Cas9-based gene inactivation and describe various boundary conditions of this methodology for P. pacificus. Specifically, we demonstrate that most mutations arise within the first 9 hours after injections. We systematically tested the efficiency of sgRNAs targeting different exons in Ppa-dpy-1 and characterized the molecular nature of the induced mutations. Finally, we provide a protocol that might also be useful for researchers working with other non-Caenorhabditis nematodes.</P>

      • KCI등재

        A New Extremely Halophilic, Calcium-Independent and Surfactant- Resistant Alpha-Amylase from Alkalibacterium sp. SL3

        ( Guozeng Wang ),( Meng Luo ),( Juan Lin ),( Yun Lin ),( Renxiang Yan ),( Wolfgang R. Streit ),( Xiuyun Ye ) 한국미생물생명공학회(구 한국산업미생물학회) 2019 Journal of microbiology and biotechnology Vol.29 No.5

        A new α-amylase-encoding gene (amySL3) of glycoside hydrolase (GH) family 13 was identified in soda lake isolate Alkalibacterium sp. SL3. The deduced AmySL3 shares high identities (82-98%) with putative α-amylases from the genus Alkalibacterium, but has low identities (<53%) with functionally characterized counterparts. amySL3 was successfully expressed in Escherichia coli, and the recombinant enzyme (rAmySL3) was purified to electrophoretic homogeneity. The optimal temperature and pH of the activity of the purified rAmySL3 were determined to be 45°C and pH 7.5, respectively. rAmySL3 was found to be extremely halophilic, showing maximal enzyme activity at a nearly saturated concentration of NaCl. Its thermostability was greatly enhanced in the presence of 4 M NaCl, and it was highly stable in 5 M NaCl. Moreover, the enzyme did not require calcium ions for activity, and was strongly resistant to a range of surfactants and hydrophobic organic solvents. The major hydrolysis products of rAmySL3 from soluble starch were maltobiose and maltotriose. The high ratio of acidic amino acids and highly negative electrostatic potential surface might account for the halophilic nature of AmySL3. The extremely halophilic, calcium-independent, and surfactant-resistant properties make AmySL3 a promising candidate enzyme for both basic research and industrial applications.

      • KCI등재

        Deep-level defect distribution as a function of oxygen partial pressure in sputtered ZnO thin-film transistors

        Jinhee Park,You Seung Rim,Chao Li,Hyung-Seok Kim,Mark Goorsky,Dwight Streit 한국물리학회 2016 Current Applied Physics Vol.16 No.10

        Deep-level defect states in sputtered ZnO thin-film transistors were investigated as a function of oxygen partial pressure during sputtering growth. Photo-induced threshold voltage-shift measurements under monochromatic illumination were used to characterize the deep-level defect distribution. Intrinsically, the defect states of oxygen vacancies were ionized to Vo þ and Vo 2þ while the photon energy was absorbed within the bandgap, resulting in the shift of threshold voltage. Extracted deep-level defect distribution from this shift of threshold voltage was clearly confirmed in the range of 1.8e2.1 eV below the conduction band minimum and this region was suppressed with increasing oxygen partial pressure. These deep-level defect states can have a detrimental effect on device performance, such as threshold voltage shift and photo-induced leakage current. The photo instability of the devices occurred under visible light due to the photo-ionization of deep-level trapped charges associated with oxygen vacancies.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼