RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Nanotoxicity of Rare Earth Metal Oxide Anchored Graphene Nanohybrid: A Facile Synthesis and In-Vitro Cellular Response Studies

        Sriparna De,Smita Mohanty,Sanjay Kumar Nayak,Suresh K. Verma,Mrutyunjay Suar 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2015 NANO Vol.10 No.6

        Graphene, a single sp2 bonded carbon, is now a burgeoning interest with various fascinating properties in a large number of biomedical applications. Consequently, the impact of graphenebased functional nanohybrid and its potential risk to human health have raised considerable public concerns. In this present study, we have synthesized cerium oxide (CeO2) anchored reduced graphene oxide (RGO) nanohybrid and a detailed study on its nanotoxicity profile has also been scrutinized. To confirm the efficient synthesis of nano-CeO2/RGO nanohybrid, the systematic characterization has been carried out using FTIR, Raman and UV-Vis spectroscopic analysis. The successful imprint of CeO2 nanoparticles (NPs) on RGO nanosheet was also evident from the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) micrographs. A dose-dependent in vitro nanotoxicity of the nanohybrid has been assessed by using monocyte macrophage cells-Raw264.7 and colon cancer cells-HCT116 as compared with RGO and CeO2. The results conferred that as compared with single nanostructures (RGO or CeO2), nanohybrid showed excellent biocompatibility and no such prominence morphological alteration of the cell structure. Moreover, after exposure of different nanomaterials to HCT116 cells, the possible cellular interaction was investigated through reactive oxygen species (ROS) measurements using flow cytometry analysis dicholoro-dihydro-fluorescen dia-acetate (DCF) assay. These results conveyed that nanohybrid adapts an oxidative stress mechanism upon cellular interaction where it utilizes the scavenging property of CeO2, which induces the cell proliferation. Overall, the nano-CeO2/RGO nanohybrid exhibits a prolonged biocompatibility and cell viability, which is highly desired for biomedical applications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼