RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Terahertz Spectroscopy and Molecular Dynamics Simulation of Five Citrates

        Siyu Qian,Bo Peng,Boyan Zhang,Jingyi Shu,Zhuang Peng,Bo Su,Cunlin Zhang 한국광학회 2024 Current Optics and Photonics Vol.8 No.1

        This research investigation employs a terahertz time-domain spectroscopy (THz-TDS) system to study the terahertz (THz) spectral characteristics of five different citrates in both solution and solid state. The citrates under examination are lithium citrate, monosodium citrate, disodium citrate, trisodium citrate, and potassium citrate. The results show that the THz absorption coefficients of the first four citrate solutions exhibit a decreasing trend with increasing concentration. However, the potassium citrate solution shows an opposite phenomenon. At the same time, the absorption coefficients of lithium citrate, trisodium citrate, and potassium citrate solutions are compared at the same concentration. The results indicate that the absorption coefficient of citrate solution increases in proportion to the increase of metal cation radius, which is explained from the perspective of the influence of metal cations on hydrogen bonds. In addition, we also study the absorption peaks of solid citrates, and characterize the formation mechanism of the absorption peaks by molecular dynamics (MD) simulations. This methodology can be further extended to the study of multitudinous salts, presenting theoretical foundations for the detection in food and medicine industries.

      • KCI등재

        Terahertz Characteristics of Hydroxygraphene Based on Microfluidic Technology

        Boyan Zhang,Siyu Qian,Bo Peng,Bo Su,Zhuang Peng,Hailin Cui,Shengbo Zhang,Cunlin Zhang 한국광학회 2023 Current Optics and Photonics Vol.7 No.4

        Hydroxygraphene as a kind of functionalized graphene has important applications in composite, photoelectric and biological materials. In the present study, THz and microfluidic technologies were implemented to study the THz transmission characteristics of hydroxygraphene with different concentrations and residence times in magnetic and electric fields. The results show that the THz transmission intensity decreases with the increase in sample concentration and duration of an applied electric field, while it increases by staying longer in the magnetic field. The phenomenon is analyzed and explained in terms of hydrogen bond, conductivity and scattering characteristics. The results establish a foundation for future research on the THz absorption characteristics of liquid graphene based on microfluidic technology in different external environments. It also provides technical support for the application and development of graphene in THz devices.

      • KCI등재

        An Investigation of the Terahertz Absorption Characteristics of a Graphene Oxide Aqueous Solution Using Microfluidic Technology

        Ningyi Cai,Boyan Zhang,Qinghao Meng,Siyu Qian,Bo Su,Hailin Cui,Shengbo Zhang,Cunlin Zhang 한국광학회 2023 Current Optics and Photonics Vol.7 No.2

        The vibratory and rotational levels of many biological macromolecules lie in the terahertz (THz) band, which means that THz techniques can be used to identify and detect them. Moreover, since the biological activity of most biomolecules only becomes apparent in aqueous solution, we use microfluidic technology to study the biological properties of these biomolecules. THz time-domain spectroscopy was used to study the THz absorption characteristics of graphene oxide (GO) aqueous solution at different concentrations and different exposure times in fixed electric or magnetic fields. The results show that the spectral characteristics of the GO solution varied with the concentration: as the concentration increased, the THz absorption decreased. The results also show that after placing the solution in an external electric field, the absorption of THz first increased and then decreased. When the solution was placed in a magnetic field, the THz absorption increased with the increase in standing time. In this paper, these results are explained based on considerations of what is occurring at the molecular scale. The results of this study provide technical support for the further study of GO and will assist with its improved application in various fields.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼