RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A new cable force identification method considering cable flexural rigidity

        Long Wang,Bo Wu,Junyue Gao,Kairong Shi,Wenzhi Pan,Zhuoyi He,Zhijian Ruan,Quanpan Lin 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.68 No.2

        Cables are the main load-bearing members of prestressed structure and other tensegrity structures. Based on the static equilibrium principle, a new cable force identification method considering cable flexural rigidity is proposed. Its computational formula is derived and the strategy to solve its implicit formula is introduced as well. In order to improve the reliability and practicality of this method, the influence of the cable flexural rigidity on cable force identification accuracy is also investigated. Through cable force identification experiments, the relationships among certain parameters including jacking force, jacking displacement, initial cable force, and sectional area (flexural rigidity) are studied. The results show that the cable force calculated by the proposed method considering flexural rigidity is in good agreement with the finite element results and experimental results. The proposed method with high computational accuracy and resolution efficiency can avoid the influences of the boundary condition and the length of the cable on calculation accuracy and is proven to be conveniently applied to cable force identification in practice.

      • SCIESCOPUS

        A new cable force identification method considering cable flexural rigidity

        Wang, Long,Wu, Bo,Gao, Junyue,Shi, Kairong,Pan, Wenzhi,He, Zhuoyi,Ruan, Zhijian,Lin, Quanpan 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.68 No.2

        Cables are the main load-bearing members of prestressed structure and other tensegrity structures. Based on the static equilibrium principle, a new cable force identification method considering cable flexural rigidity is proposed. Its computational formula is derived and the strategy to solve its implicit formula is introduced as well. In order to improve the reliability and practicality of this method, the influence of the cable flexural rigidity on cable force identification accuracy is also investigated. Through cable force identification experiments, the relationships among certain parameters including jacking force, jacking displacement, initial cable force, and sectional area (flexural rigidity) are studied. The results show that the cable force calculated by the proposed method considering flexural rigidity is in good agreement with the finite element results and experimental results. The proposed method with high computational accuracy and resolution efficiency can avoid the influences of the boundary condition and the length of the cable on calculation accuracy and is proven to be conveniently applied to cable force identification in practice.

      • KCI등재

        Correction: A sandwich-like CMC-based/graphene/CMC-based conductive agent prepared from needle coke for high-performance LiFePO4 batteries

        Zou Jin,Long Xi-Xi,He Jia-Le,Yu Shi-Peng,Zhong Sheng-Wen 한국탄소학회 2024 Carbon Letters Vol.34 No.3

        Liquid phase exfoliation of natural graphite is an industrially effective solution for graphene preparation. However, many countries have identified natural graphite as a strategic resource and restricted its mining. In this report, we used abundant and readily available needle coke (NC) as a graphene exfoliation precursor and sodium carboxymethyl cellulose (CMC) as a dispersant to prepare a sandwich structured conductive graphitized NC nanosheets (GNCNs) by liquid phase exfoliation, freeze-drying and high-temperature graphitization, in which a graphene layer is sandwiched between two thin CMC layers. CMC could increase the liquid absorption and retention ability of the conductive agent and improve the migration rate of lithium ions. The highly ordered graphene layer could accelerate the transmission of electrons. The GNCNs with 0.4 wt% CMC addition showed good rate performance (144.6 mAh g−1 at 5 C) and high cycle stability (96.2% after 200 cycles at 1 C) for LiFePO4 (LFP) battery. The traditional Super-P (SP) conductive agent exhibited low-rate performance (113.9 mAh g−1 at 5 C) and cycle performance (89.9% after 200 cycles at 1 C). This study offers a novel approach to selecting graphene precursors and has

      • SCISCIESCOPUS

        Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories

        Jiang, Jun,Bai, Zi Long,Chen, Zhi Hui,He, Long,Zhang, David Wei,Zhang, Qing Hua,Shi, Jin An,Park, Min Hyuk,Scott, James F.,Hwang, Cheol Seong,Jiang, An Quan Nature Publishing Group, a division of Macmillan P 2018 NATURE MATERIALS Vol.17 No.1

        Erasable conductive domain walls in insulating ferroelectric thin films can be used for non-destructive electrical read-out of the polarization states in ferroelectric memories. Still, the domain-wall currents extracted by these devices have not yet reached the intensity and stability required to drive read-out circuits operating at high speeds. This study demonstrated non-destructive read-out of digital data stored using specific domain-wall configurations in epitaxial BiFeO<SUB>3</SUB> thin films formed in mesa-geometry structures. Partially switched domains, which enable the formation of conductive walls during the read operation, spontaneously retract when the read voltage is removed, reducing the accumulation of mobile defects at the domain walls and potentially improving the device stability. Three-terminal memory devices produced 14 nA read currents at an operating voltage of 5 V, and operated up to T = 85 °C. The gap length can also be smaller than the film thickness, allowing the realization of ferroelectric memories with device dimensions far below 100 nm.

      • SCIESCOPUSKCI등재

        A sandwich‑like CMC‑based/graphene/CMC‑based conductive agent prepared from needle coke for high‑performance LiFePO4 batteries

        Jin Zou,Xi‑Xi Long,Jia‑Le He,Shi‑Peng Yu,Sheng‑Wen Zhong 한국탄소학회 2023 Carbon Letters Vol.33 No.7

        Liquid phase exfoliation of natural graphite is an industrially effective solution for graphene preparation. However, many countries have identified natural graphite as a strategic resource and restricted its mining. In this report, we used abundant and readily available needle coke (NC) as a graphene exfoliation precursor and sodium carboxymethyl cellulose (CMC) as a dispersant to prepare a sandwich structured conductive graphitized NC nanosheets (GNCNs) by liquid phase exfoliation, freeze-drying and high-temperature graphitization, in which a graphene layer is sandwiched between two thin CMC layers. CMC could increase the liquid absorption and retention ability of the conductive agent and improve the migration rate of lithium ions. The highly ordered graphene layer could accelerate the transmission of electrons. The GNCNs with 0.4 wt% CMC addition showed good rate performance (144.6 mAh g? 1 at 5 C) and high cycle stability (96.2% after 200 cycles at 1 C) for LiFePO4 (LFP) battery. The traditional Super-P (SP) conductive agent exhibited low-rate performance (113.9 mAh g? 1 at 5 C) and cycle performance (89.9% after 200 cycles at 1 C). This study offers a novel approach to selecting graphene precursors and has promising applications for conductive additives in high-performance LFP batteries.

      • KCI등재

        LncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/β-catenin signaling pathway

        Wang Cheng-Gong,Hu Yi-He,Su Shi-Long,Zhong Da 생화학분자생물학회 2020 Experimental and molecular medicine Vol.52 No.-

        Our study aimed to determine how lncRNA DANCR, miR-320a, and CTNNB1 interact with each other and regulate osteogenic differentiation in osteoporosis. qRT-PCR and western blotting were performed to determine the expression of DANCR, miR-320a, CTNNB1, and the osteoporosis- or Wnt/β-catenin pathway-related markers T-cell factor 1 (TCF-1), runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). Interactions between CTNNB1, DANCR, and miR-320a were predicted by bioinformatics approaches and validated using a luciferase assay. Osteoblastic phenotypes were evaluated by ALP staining, ALP activity assay and Alizarin Red staining. The bilateral ovariectomy method was used to establish an in vivo osteoporosis model. Bone morphological changes were examined using hematoxylin and eosin (H&E) and Alcian Blue staining. The expression levels of DANCR and miR-320a in BMSCs derived from osteoporosis patients were upregulated, whereas CTNNB1 expression was downregulated compared with that in healthy controls. Importantly, we demonstrated that miR-320a and DANCR acted independently from each other and both inhibited CTNNB1 expression, whereas the inhibitory effect was additive when miR-320a and DANCR were cooverexpressed. Moreover, we found that DANCR overexpression largely abrogated the effect of the miR-320a inhibitor on CTNNB1 expression and the Wnt/β-catenin signaling pathway in BMSCs during osteogenic differentiation. We further confirmed the results above in BMSCs derived from an osteoporosis animal model. Taken together, our findings revealed that DANCR and miR-320a regulated the Wnt/ β-catenin signaling pathway during osteogenic differentiation in osteoporosis through CTNNB1 inhibition. Our results highlight the potential value of DANCR and miR-320a as promising therapeutic targets for osteoporosis treatment.

      • SCOPUSKCI등재

        Ce3+ triggers fenton-like processes in neutral solutions for effective catechol degradation

        Xing Chen,Xu Liu,Hai-Bo Wang,Kang-Ping Cui,Rohan Weerasooriya,Shi-Long He,Guang-Hong Li,Jun Pan,Kai Zhou 대한환경공학회 2022 Environmental Engineering Research Vol.27 No.1

        Classical Fenton and Fenton-like processes destruct organic pollutants in water non-selectively to complete mineralization. However, the usage of classical Fenton or Fenton-like processes is often limited due to the narrow operational pH window, sludge accumulation, inefficient H₂O₂ and efficiency decline. To overcome these constraints, in this study, we used a homogeneous Fe<SUP>3+</SUP>-Ce<SUP>3+</SUP>-H₂O₂ Fenton-like process to degrade catechol at different experimental conditions. At pH 7, almost 97% of 10 mM catechol can be destructed within 60 min while the degradation by Classical Fenton or Fe<SUP>3+</SUP>-H₂O₂ Fenton-like process only 36.2% and 23.7%. The resultant solution after the degradation contains only traces of cerium ions. The sludge created by the process was extensively characterized by FTIR and XPS spectroscopy to elucidate the fate of cerium ions. Electron spin resonance (ESR) data confirmed •OH as the major free radical in Fe<SUP>3+</SUP>-Ce<SUP>3+</SUP>-H₂O₂ process. Our Fenton-like process widens the optimal pH values to neutral condition.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼