RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Metabolomics Approach in the Study of the Well-Defined Polyherbal Preparation Zyflamend

        Eric D. Tague,Allen K. Bourdon,Amber MacDonald,Maggie S. Lookadoo,Edward D. Kim,Wesley M. White,Paul D. Terry,Shawn R. Campagna,Brynn H. Voy,Jay Whelan 한국식품영양과학회 2018 Journal of medicinal food Vol.21 No.3

        Zyflamend is a highly controlled blend of 10 herbal extracts that synergistically impact multiple cell signaling pathways with anticancer and anti-inflammatory properties. More recently, its effects were shown to also modify cellular energetics, for example, activation of fatty acid oxidation and inhibition of lipogenesis. However, its general metabolic effects in vivo have yet to be explored. The objective of this study was to characterize the tissue specific metabolomes in response to supplementation of Zyflamend in mice, with a comparison of equivalent metabolomics data generated in plasma from humans supplemented with Zyflamend. Because Zyflamend has been shown to activate AMPK, the “energy sensor” of the cell, in vitro, the effects of Zyflamend on adiposity were also tested in the murine model. C57BL/6 mice were fed diets that mimicked the macro- and micronutrient composition of the U.S. diet with and without Zyflamend supplementation at human equivalent doses. Untargeted metabolomics was performed in liver, skeletal muscle, adipose, and plasma from mice consuming Zyflamend and in plasma from humans supplemented with Zyflamend at an equivalent dose. Adiposity in mice was significantly reduced in the Zyflamend-treated animals (compared with controls) without affecting body weight or weight gain. Based on KEGG pathway enrichment, purine and pyrimidine metabolism (potential regulators of AMPK) were particularly responsive to Zyflamend across all tissues, but only in mice. Consistent with the metabolomics data, Zyflamend activated AMPK and inhibited acetyl CoA-carboxylase in adipose tissue, key regulators of lipogenesis. Zyflamend reduces adipose tissue in mice through a mechanism that likely involves the activation of AMPK.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼