RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        An Investigation on Stress States of the Cataclastic Rock Specimen under Confined Compression Based on Modified Thick-walled Cylinder Model

        Jin Zhang,Ronggui Deng,Zhibin Zhong,Peipei Wu,Shaoli Qi 대한토목학회 2023 KSCE Journal of Civil Engineering Vol.27 No.10

        In high in-situ stress zones, cataclastic rocks have exerted a significant influence on the stability of engineering structures. However, the mechanical properties of cataclastic rocks can not be accurately studied due to difficulties in sampling and laboratory testing. In this paper, laterally confined compression tests for specimens that were obtained by the developed in-situ sampling devices were performed to investigate the stress states. A modified thick-walled cylinder model considering axial shear stress was introduced. The interaction mechanics model for a compressed sample and an equivalent single-layer cylinder was established. Based on the principle of elasticity, the laterally confined stress, the axial shear stress, and the axial stress of the sample were derived and obtained. Moreover, the effects of mechanical and geometric parameters of the equivalent cylinder on the force condition of the specimen were analyzed. The results show that the confined stress is positively correlated with the equivalent elastic modulus and the geometric factor. Therefore, the confined stress can be strengthened by increasing the elastic modulus, alternatively, increasing the outer diameter and decreasing the inner diameter. However, the axial stress is little affected by the equivalent elastic modulus and the geometric factor and is not affected by the equivalent Poisson's ratio. As the distance from the center height increases, the axial stress decreases linearly and the difference in axial stress becomes larger considering axial shear stress and ignoring axial shear stress.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼