RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Reactive Oxygen Species Modulator 1 (ROMO1), a New Potential Target for Cancer Diagnosis and Treatment

        Mohammad Amin Amini,Seyed Saman Talebi,Jamshid Karimi 전남대학교 의과학연구소 2019 전남의대학술지 Vol.55 No.3

        Today, the incidence of cancer in the world is rising, and it is expected that in the next several decades, the number of people suffering from cancer or (the cancer rate) will double. Cancer is defined as the excessive and uncontrolled growth of cells; of course (in simple terms), cancer is considered to be a set of other diseases that ultimately causes normal cells to be transformed into neoplastic cells. One of the most important causes of the onset and exacerbation of cancer is excessive oxidative stress. One of the most important proteins in the inner membrane of mitochondria is Reactive Oxygen Species (ROS) Modulator 1 (ROMO1) that interferes with the production of ROS, and with increasing the rate of this protein, oxidative stress will increase, which ultimately leads to some diseases, especially cancer. In this overview, we use some global databases to provide information about ROMO1 cellular signaling pathways, their related proteins and molecules, and some of the diseases associated with the mitochondrial protein, especially cancer.

      • KCI등재

        The Association of Oxidative Stress and Reactive Oxygen Species Modulator 1 (ROMO1) with Infertility: A Mini Review

        Mohammad Amin Amini,Masoud Karimi,Seyed Saman Talebi,Hossein Piri,Jamshid Karimi 전남대학교 의과학연구소 2022 전남의대학술지 Vol.58 No.3

        Infertility is one of the disorders that worries many couples around the world, although novel and molecular methods can be used to cure this disease in different stages. One of the factors that causes infertility in men and women is the increased oxidative stress within the cells, which can lead to damage in zygote formation. ROMO1 is one of the most important proteins in the production of reactive oxygen species. This protein can enhance oxidative stress in the cells and body through cellular pathways, such as TNF-a and NF-kB routes, which will eventually lead to many diseases, especially infertility. We engage several international databases by using keywords; ROMO1, Infertility, and Reactive Oxygen Species, and gained a great quantity of information about ROMO1, Infertility, and Oxidative Stress. Although not proven, it is hypothesized that ROMO1 might elevate oxidative stress by activating NF-kB pathway in the cells, furthermore, TNF-a can arouse ROMO1 that can end up with apoptosis and cell death, which consequently can have a lot of disturbing effects on the body, especially the reproductive system. To sum up, revealing the exact cellular and molecular mechanisms of ROMO1-dependent TNF-a and NF-kB pathways in the pathogenesis of infertility might find interesting therapeutic and management strategies for this disorder.

      • KCI등재

        The Association of COVID-19 and Reactive Oxygen Species Modulator 1 (ROMO1) with Oxidative Stress

        Mohammad Amin Amini,Jamshid Karimi,Seyed Saman Talebi,Hosein Piri 전남대학교 의과학연구소 2022 전남의대학술지 Vol.58 No.1

        There is no denying that the massive spread of COVID-19 around the world has worried everyone. The virus can cause mild to severe symptoms in various organs, especially the lungs. The virus affects oxidative stress in the cells. Reactive Oxygen Species modulator 1 (ROMO1) is one of the most important mitochondrial proteins that plays a critical regulatory role in the production of Reactive Oxygen Species (ROS). According to the studies, COVID-19 can promote oxidative stress through some important pathways, for instance, TNF-a and NF-kB routes. Furthermore, ROMO1 is closely related to these pathways and its dysfunction may affect these routes, then promote oxidative stress, and ultimately cause tissue damage, especially in the lungs. Another factor to consider is that the TNF-a and NF-kB pathways are associated with ROMO1, COVID-19, and oxidative stress. To summarize, it is hypothesized that COVID-19 may increase oxidative stress by affecting ROMO1. Understanding the exact molecular mechanisms of ROMO1 in the pathogenesis of COVID-19 can pave the way to find better therapeutic strategies.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼