RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review

        Antoniadis, Vasileios,Levizou, Efi,Shaheen, Sabry M.,Ok, Yong Sik,Sebastian, Abin,Baum, Christel,Prasad, Majeti N.V.,Wenzel, Walter W.,Rinklebe, Jö,rg Elsevier 2017 Earth-science reviews Vol.171 No.-

        <P><B>Abstract</B></P> <P>Trace elements (TEs) are deposited to soils mainly due to anthropogenic activities and pose a significant threat to human health. In this review we aimed at (a) discussing the phytoavailability of TEs as affected by various soil parameters, and by plant defense mechanisms related to uptake and translocation; (b) examining soil and plant indices related to TE phytoavailability; (c) clarifying the challenges and problems related to phytoremediation; and (d) exploring the often encountered discrepancies of lower-than-expected TE toxicity. We particularly discussed the soil-to-plant availability index (transfer coefficient, <I>TC</I>), because it encompasses all soil and plant factors related to TE phytoavailability. As for soil, we explored the effect of pH, redox potential, clay and organic matter contents, as well as aging of added elements. The latter is a key factor in interpreting the observed lower-than-expected toxicity to plants in real field conditions. This is because the discrepancy is very often generated by growth experiments that expose plants to TEs directly from TE-laden solutions or by studies that spike soils with TEs only days or weeks before planting. Also, the behavior of TEs depends on the nature and quantity of TEs. As for plant, TE absorption or exclusion is highly related to species-specific defense mechanisms developed by plants so that they are exposed to TE-induced stress. These mechanisms address TE exposure by operating both outside and inside the plant body; outside with the assistance of root exudates, and the rhizosphere microflora, and inside with selective translocation and storage processes. The absorption/exclusion behavior of plants also depends on root activities and related soil chemical processes which are highly localized within a spatial scale of a few mm from roots. Novel techniques for the imaging of TE biogeochemistry at the root-soil interface are therefore addressed and their explanatory power is demonstrated. Such plant behavior greatly affects phytoremediation, a process which also depends on the maximal TE uptake capacity of plants, especially of hyperaccumulators. However, phytoremediation also greatly depends on plant biomass yield, an important factor in determining the time required to complete the procedure. In conclusion, soil factors, as well as plant- and TE- related issues, may create discrepancies in TE phytoavailability and phytoremediation that need to be thoroughly understood and addressed.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼