RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Development of Particle Flow-Based Inflatable Robot Body for Shape Rigidity Modulation

        Hyunho Kim,Sangjoon Jonathan Kim,Junghoon Park,Handdeut Chang,Namkeun Kim,Yeongjin Kim 한국정밀공학회 2020 International Journal of Precision Engineering and Vol.21 No.10

        Disaster robots are needed to perform various tasks through narrow gaps between building debris to be used for rescue. A soft material-based disaster robot can have easy access to the rescue site through the narrow gaps. To ensure the robust control and better performance of the soft robot operation, a joint stiff ness modulation mechanism is required. In this paper, we have proposed a noble stiff ness modulation mechanism that includes shape change and self-assembly by using a particle flow-based inflatable robot body. We analyzed the particle filling completion time by injecting air and particles at a constant pressure into the soft chamber depending on several parameters (the size of the particle, the size of the reservoir, the volume ratio between the chamber volume and the total volume of the particle, and the injected air pressure). Of these, the most dominant factors influencing the completion time were particle size and pressure. It was observed that the smaller the size of the particle, the shorter time. The completion time tended to decrease as the air pressure increased.

      • SCISCIESCOPUS

        Development of Self-Stabilizing Manipulator Inspired by the Musculoskeletal System Using the Lyapunov Method

        Chang, Handdeut,Kim, Sangjoon Jonathan,Kim, Jung IEEE 2017 IEEE TRANSACTIONS ON ROBOTICS Vol.33 No.6

        <P>The stabilization of man-made dynamic systems has been achieved by sensor-based state feedback control with high computational bandwidth, fast signal transmission speed, and stiff joints. In contrast, many biological systems can achieve similar or superior stable behavior with low computational bandwidth, slow signal transmission speed via the nervous system, and flexible joints. The concept of self-stabilization has recently been proposed and widely investigated to explain this phenomenon. Self-stabilization is defined as the ability to restore its original state after a disturbance without any feedback control. In this paper, the stabilizing function of a musculoskeletal system for arbitrary motion in the vertical plane is analytically investigated using Lyapunov stability criteria. Based on this investigation, the method of designing a new actuator that can assign a self-stabilizing function to a robotic arm is introduced and a self-stabilizing manipulator is physically realized. As a result, a theoretically predicted self-stabilizing function is experimentally verified and explains why a biological musculoskeletal system can be stabilized with feedforward control.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼