RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Predicting ESP and HNT effects on the mechanical properties of eco-friendly composites subjected to micro-indentation test

        Saeed Kamarian,Ali Khalvandi,Thanh Mai Nguyen Tran,Reza Barbaz-Isfahani,Saeed Saber-Samandari,Jung-Il Song Techno-Press 2023 Advances in nano research Vol.15 No.4

        The main goal of the present study was to assess the effects of eggshell powder (ESP) and halloysite nanotubes (HNTs) on the mechanical properties of abaca fiber (AF)-reinforced natural composites. For this purpose, a limited number of indentation tests were first performed on the AF/polypropylene (PP) composites for different HNT and ESP loadings (0 wt.% ~ 6 wt.%), load amplitudes (150, 200, and 250 N), and two types of indenters (Vickers or conical). The Young's modulus, hardness and plasticity index of each specimen were calculated using the indentation test results and Oliver-Pharr method. The accuracy of the experimental results was confirmed by comparing the values of the Young's modulus obtained from the indentation test with the results of the conventional tensile test. Then, a feed-forward shallow artificial neural network (ANN) with high efficiency was trained based on the obtained experimental data. The trained ANN could properly predict the variations of the mentioned mechanical properties of AF/PP composites incorporated with different HNT and ESP loadings. Furthermore, the trained ANN demonstrated that HNTs increase the elastic modulus and hardness of the composite, while the incorporation of ESP reduces these properties. For instance, the Young's modulus of composites incorporated with 3 wt.% of ESP decreased by 30.7% compared with the pure composite, while increasing the weight fraction of ESP up to 6% decreased the Young's modulus by 34.8%. Moreover, the trained ANN indicated that HNTs have a more significant effect on reducing the plasticity index than ESP.

      • KCI등재

        A Porous Sodium Alginate-CaSiO3 Polymer Reinforced with Graphene Nanosheet: Fabrication and Optimality Analysis

        Shahin Foroutan,Mohammad Hashemian,Mehdi Khosravi,Mazyar Ghadiri Nejad,Azadeh Asefnejad,Saeed Saber-Samandari,Amirsalar Khandan 한국섬유공학회 2021 Fibers and polymers Vol.22 No.2

        Bone regeneration is a growing and relatively effective treatment in most bone disease treatments. Adverse effectsassociated with conventional transplantation techniques have led to advanced bone tissue engineering. The purpose of thisstudy is to produce a bone scaffold, made of sodium alginate (Na-Alg) based scaffold, with the addition of wollastonitegraphenenanosheet (WS-GS) with similar mechanical properties to normal bone. First, the Na-Alg-WS-GS nanocompositesare fabricated using freeze-drying technique in which GS is used as additives with different weight percentages (0, 1, 2 and3 wt%). The fabricated nanocomposite scaffolds are tested and analyzed by X-ray diffraction (XRD) and scanning electronmicroscopy (SEM) analyzes. The maximum tensile strength, lowest decrease in sample area and stress yield is tested usingmechanical testing. Then, the biological response in the biological environment, pH and weight changes after immersion insimulated body fluid (SBF) and phosphate buffered saline (PBS) is determined. The results show that the sample with 1 wt%GS has an appropriate capacity for reconstitution in the biological solution. The SEM shows an appropriate porosity of thescaffolds and a uniform distribution of GS in the polymeric matrix. The SEM images shows that as the amount of GSincreases, the swelling capacity of the nanocomposites rises, regarding the weak bonding of GS and polymeric matrix. Additional amount of GS leads to increase in the tensile strength with the sample containing 1 wt%, however increasing ofGS may decreases the mechanical performance of the structure. To gain the optimal combination of scaffold with the bestmechanical and biological properties, the Global Criterion Method (GCM) is utilized. The obtained results show that theprepared nanocomposites are suitable for further development in tissue engineering and can be suitable for the bonesubstitutes application with desirable mechanical performance.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼