RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Simple 4-segment thermal cycling pyroelectric measurement protocol for differentiating between ferroelectric and non-ferroelectric materials

        Wagh Aditya A.,Bhat Shwetha G.,Anusree V.K.,Santhosh P.N.,Elizabeth Suja,Kumar P.S. Anil 한국물리학회 2023 Current Applied Physics Vol.49 No.-

        The rare-earth chromates, RECrO3 and manganites REMnO3 (RE = Eu, Y, Dy, Ho, Gd) are considered potential room temperature multiferroics. However, artefacts and undesirable signals pose a severe challenge in confirming the ferroelectric (FE) phase, especially in pyroelectric current measurement technique. We propose a simple modified approach to the technique, named as 4-segment thermal cycling protocol. This protocol assists in isolating the irreversible thermally stimulated current from those associated with spontaneous and reversible nature of the electric polarization in FE phase. Here, we have compared simulated response of two hypothetical materials; an FE material and a paraelectric material. Further, we experimentally verify the protocol in a single crystal of prototype FE material, Glycine Phosphite. Using the proposed protocol, we investigated polycrystalline materials, HoCrO3 (reported multiferroic earlier) and DyFe0.5Mn0.5O3. Our results expound on the absence of reversible spontaneous electric polarization in temperature ranges tested.

      • KCI등재

        Genome Profiling for Health Promoting and Disease Preventing Traits Unraveled Probiotic Potential of Bacillus clausii B106

        N.G. Kapse,A. S. Engineer,V. Gowdaman,S. Wagh,P. K. Dhakephalkar 한국미생물·생명공학회 2018 한국미생물·생명공학회지 Vol.46 No.4

        Spore-forming Bacillus species are commercially available probiotic formulations for application in humans. They have health benefits and help prevent disease in hosts by combating entero-pathogens and ameliorating antibiotic-associated diarrhea. However, the molecular and cellular mechanisms of these benefits remain unclear. Here, we report the draft genome of a potential probiotic strain of Bacillus clausii B106. We mapped and compared the probiotic profile of B106 with other reference genomes. The draft genome analysis of B106 revealed the presence of ADI pathway genes, indicating its ability to tolerate acidic pH and bile salts. Genes encoding fibronectin binding proteins, enolase, as well as a gene cluster involved in the biosynthesis of exopolysaccharides underscored the potential of B106 to adhere to the intestinal epithelium and colonize the human gut. Genes encoding bacteriocins were also detected, indicating the antimicrobial ability of this isolate. The presence of genes encoding vitamins, including Riboflavin, Folate, and Biotin, also indicated the health-promoting ability of B106. Resistance of B106 to multiple antibiotics was evident from the presence of genes encoding resistance to chloramphenicol, β-lactams, Vancomycin, Tetracycline, fluoroquinolones, and aminoglycosides. The findings indicate the significance of B. clausii B106 administration during antibiotic treatment and its potential value as a probiotic strain to replenish the health-promoting and disease-preventing gut flora following antibiotic treatment.

      • KCI등재

        Interplay of Structural Distortions, Dielectric Effects and Magnetic Order in Multiferroic GdMnO3

        Mathias Doerr,Michael Loewenhaupt,Aditya A. Wagh,P. S. Anil Kumar,Suja Elizabeth,Sahana Roessler,Martin Rotter,Steffen Wirth 한국물리학회 2013 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.62 No.10

        Multiferroic materials are characterized by simultaneous magnetic and ferroelectric ordering making them good candidates for magneto-electrical applications. We conducted thermal expansion and magnetostriction measurements in magnetic fields up to 14 T on perovskitic GdMnO3 by highresolution capacitive dilatometry in an effort to determine all longitudinal and transversal components of the magnetostriction tensor. Below the ordering temperature TN = 42 K, i.e., within the different complex (incommensurate or complex) antiferromagnetic phases, lattice distortions of up to 100 ppm have been found. Although no change of the lattice symmetry occurs, the measurements reveal strong magneto-structural phenomena, especially in the incommensurate sinusoidal antiferromagnetic phase. A strong anisotropy of the magnetoelastic properties was found, in good agreement with the type and propagation vector of the magnetic structure. We demonstrate that our capacitive dilatometry can detect lattice expansion effects and changes of the dielectric permittivity simultaneously because the sample is housed inside the capacitor. A separation of both effects is possible by shielding the sample. Dielectric transitions could be detected by this method and compared to the critical values of H and T in the magnetic phase diagram. Dielectric changes measured at 1 kHz excitation frequency are detected in GdMnO3 at about 180 K,and between 10 K and 25 K in the canted antiferromagnetic structure which is characterized by a complex magnetic order on both the Gd- and Mn-sites.

      • KCI등재

        Immobilization of Steapsin Lipase on Macroporous Immobead-350 for Biodiesel Production in Solvent Free System

        Kishor P. Dhake,Kushal D. Bhatte,Yogesh S. Wagh,Rekha S. Singhal,Bhalchandra M. Bhanage 한국생물공학회 2012 Biotechnology and Bioprocess Engineering Vol.17 No.5

        Commercially available steapsin lipase was immobilized on macroporous polymer beads (IB-350) and further investigated for biodiesel production under solvent free conditions. The fatty acid methyl ester (biodiesel)synthesis was carried out by the methanolysis of fresh and used cooking sunflower oil. The enzymatic reaction for biodiesel synthesis was optimized with various reaction parameters and the obtained reaction conditions were 1: 6molar ratio (oil: methanol), 50 mg biocatalyst and 20% water content at 45oC for 48 h under solvent free conditions. It was observed that 94% of biodiesel was produced under the optimized reaction conditions. The four step addition of methanol at the interval of 12 h was found to be more effective. Moreover the biocatalyst was effectively reused for four consecutive recycles and was appreciably stable for 90 days. The results obtained highlight potential of immobilized steapsin lipase for biodiesel production.

      • SCOPUSKCI등재

        Genome Profiling for Health Promoting and Disease Preventing Traits Unraveled Probiotic Potential of Bacillus clausii B106

        Kapse, N.G.,Engineer, A.S.,Gowdaman, V.,Wagh, S.,Dhakephalkar, P.K. The Korean Society for Microbiology and Biotechnol 2018 한국미생물·생명공학회지 Vol.46 No.4

        Spore-forming Bacillus species are commercially available probiotic formulations for application in humans. They have health benefits and help prevent disease in hosts by combating entero-pathogens and ameliorating antibiotic-associated diarrhea. However, the molecular and cellular mechanisms of these benefits remain unclear. Here, we report the draft genome of a potential probiotic strain of Bacillus clausii B106. We mapped and compared the probiotic profile of B106 with other reference genomes. The draft genome analysis of B106 revealed the presence of ADI pathway genes, indicating its ability to tolerate acidic pH and bile salts. Genes encoding fibronectin binding proteins, enolase, as well as a gene cluster involved in the biosynthesis of exopolysaccharides underscored the potential of B106 to adhere to the intestinal epithelium and colonize the human gut. Genes encoding bacteriocins were also detected, indicating the antimicrobial ability of this isolate. The presence of genes encoding vitamins, including Riboflavin, Folate, and Biotin, also indicated the health-promoting ability of B106. Resistance of B106 to multiple antibiotics was evident from the presence of genes encoding resistance to chloramphenicol, ${\beta}$-lactams, Vancomycin, Tetracycline, fluoroquinolones, and aminoglycosides. The findings indicate the significance of B. clausii B106 administration during antibiotic treatment and its potential value as a probiotic strain to replenish the health-promoting and disease-preventing gut flora following antibiotic treatment.

      • Features of Recently Transmitted HIV-1 Clade C Viruses that Impact Antibody Recognition: Implications for Active and Passive Immunization

        Rademeyer, Cecilia,Korber, Bette,Seaman, Michael S.,Giorgi, Elena E.,Thebus, Ruwayhida,Robles, Alexander,Sheward, Daniel J.,Wagh, Kshitij,Garrity, Jetta,Carey, Brittany R.,Gao, Hongmei,Greene, Kelli M Public Library of Science 2016 PLoS pathogens Vol.12 No.7

        <▼1><P>The development of biomedical interventions to reduce acquisition of HIV-1 infection remains a global priority, however their potential effectiveness is challenged by very high HIV-1 envelope diversity. Two large prophylactic trials in high incidence, clade C epidemic regions in southern Africa are imminent; passive administration of the monoclonal antibody VRC01, and active immunization with a clade C modified RV144-like vaccines. We have created a large representative panel of C clade viruses to enable assessment of antibody responses to vaccines and natural infection in Southern Africa, and we investigated the genotypic and neutralization properties of recently transmitted clade C viruses to determine how viral diversity impacted antibody recognition. We further explore the implications of these findings for the potential effectiveness of these trials. A panel of 200 HIV-1 Envelope pseudoviruses was constructed from clade C viruses collected within the first 100 days following infection. Viruses collected pre-seroconversion were significantly more resistant to serum neutralization compared to post-seroconversion viruses (p = 0.001). Over 13 years of the study as the epidemic matured, HIV-1 diversified (p = 0.0009) and became more neutralization resistant to monoclonal antibodies VRC01, PG9 and 4E10. When tested at therapeutic levels (10ug/ml), VRC01 only neutralized 80% of viruses in the panel, although it did exhibit potent neutralization activity against sensitive viruses (IC<SUB>50</SUB> titres of 0.42 μg/ml). The Gp120 amino acid similarity between the clade C panel and candidate C-clade vaccine protein boosts (Ce1086 and TV1) was 77%, which is 8% more distant than between CRF01_AE viruses and the RV144 CRF01_AE immunogen. Furthermore, two vaccine signature sites, K169 in V2 and I307 in V3, associated with reduced infection risk in RV144, occurred less frequently in clade C panel viruses than in CRF01_AE viruses from Thailand. Increased resistance of pre-seroconversion viruses and evidence of antigenic drift highlights the value of using panels of very recently transmitted viruses and suggests that interventions may need to be modified over time to track the changing epidemic. Furthermore, high divergence such as that observed in the older clade C epidemic in southern Africa may impact vaccine efficacy, although the correlates of infection risk are yet to be defined in the clade C setting. Findings from this study of acute/early clade C viruses will aid vaccine development, and enable identification of new broad and potent antibodies to combat the HIV-1 C-clade epidemic in southern Africa.</P></▼1><▼2><P><B>Author Summary</B></P><P>Vaccine and passive immunization prophylactic trials that rely on antibody-mediated protection are planned for HIV-1 clade C epidemic regions of southern Africa, which have amongst the highest HIV-1 incidences globally. This includes a phase 2b trial of passively administered monoclonal antibody, VRC01; as well as a phase 3 trial using the clade C modified version of the partially efficacious RV144 vaccine. The extraordinary diversity of HIV-1 poses a major obstacle to these interventions, and our study aimed to determine the implications of viral diversity on antibody recognition. Investigations using our panel of very early viruses augment current knowledge of vulnerable targets on transmitted viruses for vaccine design and passive immunization studies. Evidence of antigenic drift with viruses becoming more resistant over time suggests that these prevention modalities will need to be updated over time and that combinations of antibodies will be necessary to achieve coverage in passive immunization studies. We further show that it may be more difficult to obtain protection in the genetically diverse clade C epidemic compared to RV144 where the epidemic is less diverse, although it should be noted that the correlates of infection risk are yet to be defined in the clade C setti

      • SCISCIESCOPUS

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼