RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Fabrication of Photopolymer Hierarchical Micronanostructures by Coupling Electrospinning and Photolithography for SERS Substrates

        Wen-Yi Zhang,Xin-Ze Xiao,Chao Lv,Jia Zhao,Gong Wang,Xuan Gu,Ran Zhang,Bin-Bin Xu,Dan-Dan Zhang,Ai-Wu Li,Yong-Lai Zhang,Hong-Bo Sun 한국고분자학회 2013 Macromolecular Research Vol.21 No.3

        Reported here is the fabrication of photopolymer hierarchical micronanostructures through a combinative process of electrospinning and subsequent photolithography. Electrospun SU-8 (epoxy-based negative photoresist)nanofiber films have been patterned into gratings with periods of 100, 200, 300, and 400 μm, respectively. Deposition of a silver nanolayer on these interlaced nanofiber films would lead to the formation of various plasmonic nanostructures,and therefore, giving rise to abundant surface-enhanced Raman scattering (SERS) “hot spots”. In the detection of Rhodamine 6G (R6G), probing molecule, the resultant SERS substrates show both high sensitivity and good reproducibility. The SERS enhancement factor could reach as high as ~108, indicating high efficiency. The fabrication of patterned, highly efficient SERS substrates may hold a great promise for the integration of SERS substrates in various microdevices such as microfluidic chips.

      • KCI등재

        Boundary Layer and Cooling Rate and Microstructure Formation on the Cooling Sloping Plate

        Ren Guo Guan,Zhan Yong Zhao,Run Ze Chao,Lei Dong,이종수,Chun Ming Liu 대한금속·재료학회 2013 METALS AND MATERIALS International Vol.19 No.5

        During melt treatment by cooling sloping plate, laminar flow and turbulent flow exist on sloping plate surface commonly. The thickness of velocity boundary layer and the critical transfer distance from laminar flow to turbulent flow increase with the decrease of initial flow velocity. The thickness of temperature boundary layer increases with the increment of flow distance and the decrease of initial flow velocity. The melt cooling rate and melt thickness have an inverse proportion relationship. The melt cooling rate of cooling sloping plate process can reach 102-103 K/s and belongs to meta-rapid solidification scope. Uniform solute field and high cooling rate can lead to eruptive nucleation. In addition, a large quantity of heterogonous nuclei appears on the sloping plate surface, and vibrating flow can enable heterogonous nucleus to escape off the plate, which leads to nucleus multiplication. Under relative uniform solute field and high cooling rate, some grains can keep stable growth surface, go on growing with the round surface and finally maintain their globular structure. However, there are always some grains that grow along a certain preferred direction, but under vibrating flow their dendritic arms break and transform into near spherical structure.

      • KCI등재

        Effects of graphite additives in electrolytes on the microstructure and corrosion resistance of Alumina PEO coatings

        Guo-Hua Lv,Huan Chen,Wei-Chao Gu,Wen-Ran Feng,Li Li,Er-Wu Niu,Xian-Hui Zhang,Si-Ze Yang 한국물리학회 2009 Current Applied Physics Vol.9 No.3

        In the present work, graphite grains of different sizes were added into the electrolyte to prepare ceramic coatings on aluminum by plasma electrolytic oxidation (PEO). Scanning electron microscopy (SEM) coupled with an energy dispersive X-ray analysis system (EDX), Raman spectroscopy and X-ray diffractometer (XRD) were used to characterize the coatings. A three-electrode system was used to evaluate the corrosion performances of the coatings in a 3.5 wt.% NaCl solution. It was found that the morphology and corrosion performance of the coatings were significantly influenced by the size of the graphite grains. Compared with bigger graphite grains, finer ones were involved in the oxidation process and embedded within the ceramic coatings, which made the coatings less porous and more compact. Thus, the corrosion resistance of the coatings with embedded graphite grains was greatly improved. In the present work, graphite grains of different sizes were added into the electrolyte to prepare ceramic coatings on aluminum by plasma electrolytic oxidation (PEO). Scanning electron microscopy (SEM) coupled with an energy dispersive X-ray analysis system (EDX), Raman spectroscopy and X-ray diffractometer (XRD) were used to characterize the coatings. A three-electrode system was used to evaluate the corrosion performances of the coatings in a 3.5 wt.% NaCl solution. It was found that the morphology and corrosion performance of the coatings were significantly influenced by the size of the graphite grains. Compared with bigger graphite grains, finer ones were involved in the oxidation process and embedded within the ceramic coatings, which made the coatings less porous and more compact. Thus, the corrosion resistance of the coatings with embedded graphite grains was greatly improved.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼