RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Flexural Strengthening of RC Slabs Using a Hybrid FRP-UHPC System Including Shear Connector

        Moon, Jiho,Reda Taha, Mahmoud M.,Kim, Jung J. Hindawi Publishing Corporation 2017 Advances In Materials Science And Engineering Vol.2017 No.1

        <P>A polymeric hybrid composite system made of UHPC and CFRP was proposed as a retrofit system to enhance flexural strength and ductility of RC slabs. While the effectiveness of the proposed system was confirmed previously through testing three full-scale one-way slabs having two continuous spans, the slabs retrofitted with the hybrid system failed in shear. This sudden shear failure would stem from the excessive enhancement of the flexural strength over the shear strength. In this study, shear connectors were installed between the hybrid system and a RC slab. Using simple beam, only positive moment section was examined. Two full-scale RC slabs were cast and tested to failure: the first as a control and the second using this new strengthening technique. The proposed strengthening system increased the ultimate load carrying capacity of the slab by 70%, the stiffness by 60%, and toughness by 128%. The efficiency of shear connectors on ductile behavior of the retrofitted slab was also confirmed. After the UHPC top is separated from the slab, the shear connector transfer shear load and the slab system were in force equilibrium by compression in UHPC and tension in CFRP.</P>

      • SCIESCOPUSKCI등재

        Identifying the Significance of Factors Affecting Creep of Concrete: A Probabilistic Analysis of RILEM Database

        Adam, Ihab,Taha, Mahmoud M. Reda Korea Concrete Institute 2011 International Journal of Concrete Structures and M Vol.5 No.2

        Modeling creep of concrete has been one of the most challenging problems in concrete. Over the years, research has proven the significance of creep and its ability to influence structural behavior through loss of prestress, violation of serviceability limit states or stress redistribution. Because of this, interest in modeling and simulation of creep has grown significantly. A research program was planned to investigate the significance of different factors affecting creep of concrete. This research investigation is divided into two folds: first, an in-depth study of the RILEM creep database and development of a homogenous database that can be used for blind computational analysis. Second: developing a probabilistic Bayesian screening method that enables identifying the significance of the different factors affecting creep of concrete. The probabilistic analysis revealed a group of interacting parameters that seem to significantly influence creep of concrete.

      • KCI등재후보

        Identifying the Significance of Factors Affecting Creep of Concrete

        Ihab Adam,Mahmoud M. Reda Taha 한국콘크리트학회 2011 International Journal of Concrete Structures and M Vol.5 No.2

        Modeling creep of concrete has been one of the most challenging problems in concrete. Over the years, research has proven the significance of creep and its ability to influence structural behavior through loss of prestress, violation of serviceability limit states or stress redistribution. Because of this, interest in modeling and simulation of creep has grown significantly. A research program was planned to investigate the significance of different factors affecting creep of concrete. This research investigation is divided into two folds: first, an in-depth study of the RILEM creep database and development of a homogenous database that can be used for blind computational analysis. Second: developing a probabilistic Bayesian screening method that enables identifying the significance of the different factors affecting creep of concrete. The probabilistic analysis revealed a group of interacting parameters that seem to significantly influence creep of concrete.

      • SCISCIESCOPUS
      • SCIESCOPUS

        A homogenization approach for uncertainty quantification of deflection in reinforced concrete beams considering microstructural variability

        Kim, Jung J.,Fan, Tai,Reda Taha, Mahmoud M. Techno-Press 2011 Structural Engineering and Mechanics, An Int'l Jou Vol.38 No.4

        Uncertainty in concrete properties, including concrete modulus of elasticity and modulus of rupture, are predicted by developing a microstructural homogenization model. The homogenization model is developed by analyzing a concrete representative volume element (RVE) using the finite element (FE) method. The concrete RVE considers concrete as a three phase composite material including: cement paste, aggregate and interfacial transition zone (ITZ). The homogenization model allows for considering two sources of variability in concrete, randomly dispersed aggregates in the concrete matrix and uncertain mechanical properties of composite phases of concrete. Using the proposed homogenization technique, the uncertainty in concrete modulus of elasticity and modulus of rupture (described by numerical cumulative probability density function) are determined. Deflection uncertainty of reinforced concrete (RC) beams, propagated from uncertainties in concrete properties, is quantified using Monte Carlo (MC) simulation. Cracked plane frame analysis is used to account for tension stiffening in concrete. Concrete homogenization enables a unique opportunity to bridge the gap between concrete materials and structural modeling, which is necessary for realistic serviceability prediction.

      • KCI등재

        A homogenization approach for uncertainty quantification of deflection in reinforced concrete beams considering microstructural variability

        김정중,Tai Fan,Mahmoud M. Reda Taha 국제구조공학회 2011 Structural Engineering and Mechanics, An Int'l Jou Vol.38 No.4

        Uncertainty in concrete properties, including concrete modulus of elasticity and modulus of rupture, are predicted by developing a microstructural homogenization model. The homogenization model is developed by analyzing a concrete representative volume element (RVE) using the finite element (FE)method. The concrete RVE considers concrete as a three phase composite material including: cement paste, aggregate and interfacial transition zone (ITZ). The homogenization model allows for considering two sources of variability in concrete, randomly dispersed aggregates in the concrete matrix and uncertain mechanical properties of composite phases of concrete. Using the proposed homogenization technique, the uncertainty in concrete modulus of elasticity and modulus of rupture (described by numerical cumulative probability density function) are determined. Deflection uncertainty of reinforced concrete (RC) beams, propagated from uncertainties in concrete properties, is quantified using Monte Carlo (MC) simulation. Cracked plane frame analysis is used to account for tension stiffening in concrete. Concrete homogenization enables a unique opportunity to bridge the gap between concrete materials and structural modeling, which is necessary for realistic serviceability prediction.

      • Extracting Concrete Thermal Characteristics from Temperature Time History of RC Column Exposed to Standard Fire

        Kim, Jung J.,Youm, Kwang-Soo,Reda Taha, Mahmoud M. Hindawi Publishing Corporation 2014 The Scientific World Journal Vol.2014 No.-

        <P>A numerical method to identify thermal conductivity from time history of one-dimensional temperature variations in thermal unsteady-state is proposed. The numerical method considers the change of specific heat and thermal conductivity with respect to temperature. Fire test of reinforced concrete (RC) columns was conducted using a standard fire to obtain time history of temperature variations in the column section. A thermal equilibrium model in unsteady-state condition was developed. The thermal conductivity of concrete was then determined by optimizing the numerical solution of the model to meet the observed time history of temperature variations. The determined thermal conductivity with respect to temperature was then verified against standard thermal conductivity measurements of concrete bricks. It is concluded that the proposed method can be used to conservatively estimate thermal conductivity of concrete for design purpose. Finally, the thermal radiation properties of concrete for the RC column were estimated from the thermal equilibrium at the surface of the column. The radiant heat transfer ratio of concrete representing absorptivity to emissivity ratio of concrete during fire was evaluated and is suggested as a concrete criterion that can be used in fire safety assessment.</P>

      • SCIESCOPUS

        Entropy-based optimal sensor networks for structural health monitoring of a cable-stayed bridge

        Azarbayejani, M.,El-Osery, A.I.,Taha, M.M. Reda Techno-Press 2009 Smart Structures and Systems, An International Jou Vol.5 No.4

        The sudden collapse of Interstate 35 Bridge in Minneapolis gave a wake-up call to US municipalities to re-evaluate aging bridges. In this situation, structural health monitoring (SHM) technology can provide the essential help needed for monitoring and maintaining the nation's infrastructure. Monitoring long span bridges such as cable-stayed bridges effectively requires the use of a large number of sensors. In this article, we introduce a probabilistic approach to identify optimal locations of sensors to enhance damage detection. Probability distribution functions are established using an artificial neural network trained using a priori knowledge of damage locations. The optimal number of sensors is identified using multi-objective optimization that simultaneously considers information entropy and sensor cost-objective functions. Luling Bridge, a cable-stayed bridge over the Mississippi River, is selected as a case study to demonstrate the efficiency of the proposed approach.

      • KCI등재후보

        Photonic sensors for micro-damage detection: A proof of concept using numerical simulation

        M. Sheyka,I. El-Kady,M. F. Su,M. M. Reda Taha 국제구조공학회 2009 Smart Structures and Systems, An International Jou Vol.5 No.4

        Damage detection has been proven to be a challenging task in structural health monitoring (SHM) due to the fact that damage cannot be measured. The difficulty associated with damage detection is related to electing a feature that is sensitive to damage occurrence and evolution. This difficulty increases as the damage size decreases limiting the ability to detect damage occurrence at the micron and submicron length scale. Damage detection at this length scale is of interest for sensitive structures such as aircrafts and nuclear facilities. In this paper a new photonic sensor based on photonic crystal (PhC) technology that can be synthesized at the nanoscale is introduced. PhCs are synthetic materials that are capable of controlling light propagation by creating a photonic bandgap where light is forbidden to propagate. The interesting feature of PhC is that its photonic signature is strongly tied to its microstructure periodicity. This study demonstrates that when a PhC sensor adhered to polymer substrate experiences micron or submicron damage, it will experience changes in its microstructural periodicity thereby creating a photonic signature that can be related to damage severity. This concept is validated here using a three-dimensional integrated numerical simulation.

      • SCIESCOPUSKCI등재

        Improving Impact Resistance of Polymer Concrete Using CNTs

        Daghash, Sherif M.,Soliman, Eslam M.,Kandil, Usama F.,Taha, Mahmoud M. Reda Korea Concrete Institute 2016 International Journal of Concrete Structures and M Vol.10 No.4

        Polymer concrete (PC) has been favoured over Portland cement concrete when low permeability, high adhesion, and/or high durability against aggressive environments are required. In this research, a new class of PC incorporating Multi-Walled Carbon Nanotubes (MWCNTs) is introduced. Four PC mixes with different MWCNTs contents were examined. MWCNTs were carefully dispersed in epoxy resin and then mixed with the hardener and aggregate to produce PC. The impact strength of the new PC was investigated by performing low-velocity impact tests. Other mechanical properties of the new PC including compressive, flexural, and shear strengths were also characterized. Moreover, microstructural characterization using scanning electron microscope and Fourier transform infrared spectroscopy of PC incorporating MWCNTs was performed. Impact test results showed that energy absorption of PC with 1.0 wt% MWCNTs by weight of epoxy resin was significantly improved by 36 % compared with conventional PC. Microstructural analysis demonstrated evidence that MWCNTs significantly altered the chemical structure of epoxy matrix. The changes in the microstructure lead to improvements in the impact resistance of PC, which would benefit the design of various PC structural elements.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼