RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Thermomechanical deformation in porous generalized thermoelastic body with variable material properties

        Rajneesh Kumar,Savita Devi 국제구조공학회 2010 Structural Engineering and Mechanics, An Int'l Jou Vol.34 No.3

        The two-dimensional deformation of a homogeneous, isotropic thermoelastic half-space with voids with variable modulus of elasticity and thermal conductivity subjected to thermomechanical boundary conditions has been investigated. The formulation is applied to the coupled theory(CT) as well as generalized theories: Lord and Shulman theory with one relaxation time(LS), Green and Lindsay theory with two relaxation times(GL) Chandrasekharaiah and Tzou theory with dual phase lag(C-T) of thermoelasticity. The Laplace and Fourier transforms techniques are used to solve the problem. As an application, concentrated/uniformly distributed mechanical or thermal sources have been considered to illustrate the utility of the approach. The integral transforms have been inverted by using a numerical inversion technique to obtain the components of displacement, stress, changes in volume fraction field and temperature distribution in the physical domain. The effect of dependence of modulus of elasticity on the components of stress, changes in volume fraction field and temperature distribution are illustrated graphically for a specific model. Different special cases are also deduced.

      • SCIESCOPUS

        Vibration analysis of wave motion in micropolar thermoviscoelastic plate

        Kumar, Rajneesh,Partap, Geeta Techno-Press 2011 Structural Engineering and Mechanics, An Int'l Jou Vol.39 No.6

        The aim of the present article is to study the micropolar thermoelastic interactions in an infinite Kelvin-Voigt type viscoelastic thermally conducting plate. The coupled dynamic thermoelasticity and generalized theories of thermoelasticity, namely, Lord and Shulman's and Green and Lindsay's are employed by assuming the mechanical behaviour as dynamic to study the problem. The model has been simplified by using Helmholtz decomposition technique and the resulting equations have been solved by using variable separable method to obtain the secular equations in isolated mathematical conditions for homogeneous isotropic micropolar thermo-viscoelastic plate for symmetric and skew-symmetric wave modes. The dispersion curves, attenuation coefficients, amplitudes of stresses and temperature distribution for symmetric and skew-symmetric modes are computed numerically and presented graphically for a magnesium crystal.

      • KCI등재

        Vibration analysis of wave motion in micropolar thermoviscoelastic plate

        Rajneesh Kumar,Geeta Partap 국제구조공학회 2011 Structural Engineering and Mechanics, An Int'l Jou Vol.39 No.6

        The aim of the present article is to study the micropolar thermoelastic interactions in an infinite Kelvin-Voigt type viscoelastic thermally conducting plate. The coupled dynamic thermoelasticity and generalized theories of thermoelasticity, namely, Lord and Shulman’s and Green and Lindsay’s are employed by assuming the mechanical behaviour as dynamic to study the problem. The model has been simplified by using Helmholtz decomposition technique and the resulting equations have been solved by using variable separable method to obtain the secular equations in isolated mathematical conditions for homogeneous isotropic micropolar thermo-viscoelastic plate for symmetric and skew-symmetric wave modes. The dispersion curves, attenuation coefficients, amplitudes of stresses and temperature distribution for symmetric and skew-symmetric modes are computed numerically and presented graphically for a magnesium crystal.

      • Effect of fractional order on energy ratios at the boundary surface of elastic-piezothermoelastic media

        Kumar, Rajneesh,Sharma, Poonam Techno-Press 2017 Coupled systems mechanics Vol.6 No.2

        In the present investigation reflection and transmission of plane waves at an elastic half space and piezothermoelastic solid half space with fractional order derivative is discussed. The piezothermoelastic solid half space is assumed to have 6 mm type symmetry and assumed to be loaded with an elastic half space. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of incidence, frequency of incident wave and are influenced by the piezothermoelastic properties of media. The expressions of amplitude ratios and energy ratios are obtained in closed form. The energy ratios are computed numerically using amplitude ratios for a particular model of graphite and Cadmium Selenide (CdSe). The variations of energy ratios with angle of incidence are shown graphically. The conservation of energy across the interface is verified. Some cases of interest are also deduced from the present investigation.

      • KCI등재

        Response of temperature dependence of an elastic modulus in microstretch generalized thermoelasticity

        Rajneesh Kumar,Rajani Rani Gupta 국제구조공학회 2008 Structural Engineering and Mechanics, An Int'l Jou Vol.30 No.5

        Laplace-Fourier transform techniques are used to investigate the interaction caused by mechanical, thermal and microstress sources in a generalized thermomicrostretch elastic medium with temperature-dependent mechanical properties. The modulus of elasticity is taken as a linear function of reference temperature. The integral transforms are inverted using a numerical technique to obtain the normal stress, tangential stress, tangential couple stress, microstress and temperature distribution. Effect of temperature dependent modulus of elasticity and thermal relaxation times have been depicted graphically on the resulting quantities. Comparisons are made with the results predicted by the theories of generalized thermoelasticity. Some particular cases are also deduced from the present investigation.

      • KCI등재

        Influence of various sources in micropolar thermoelastic medium with voids

        Rajneesh Kumar,Praveen Ailawalia 국제구조공학회 2009 Structural Engineering and Mechanics, An Int'l Jou Vol.31 No.6

        The present problem is concerned with the study of deformation of micropolar thermoelastic medium with voids under the influence of various sources acting on the plane surface. The analytic expressions of displacement components, force stress, couple stress, change in volume fraction field and temperature distribution are obtained in the transformed domain for Lord-Shulman (L-S) theory of thermoelasticity after applying the integral transforms. A numerical inversion technique has been applied to obtain the solution in the physical domain. The numerical results are presented graphically. Some useful particular cases have also been deduced.

      • SCIESCOPUS

        Thermomechanical deformation in porous generalized thermoelastic body with variable material properties

        Kumar, Rajneesh,Devi, Savita Techno-Press 2010 Structural Engineering and Mechanics, An Int'l Jou Vol.34 No.3

        The two-dimensional deformation of a homogeneous, isotropic thermoelastic half-space with voids with variable modulus of elasticity and thermal conductivity subjected to thermomechanical boundary conditions has been investigated. The formulation is applied to the coupled theory(CT) as well as generalized theories: Lord and Shulman theory with one relaxation time(LS), Green and Lindsay theory with two relaxation times(GL) Chandrasekharaiah and Tzou theory with dual phase lag(C-T) of thermoelasticity. The Laplace and Fourier transforms techniques are used to solve the problem. As an application, concentrated/uniformly distributed mechanical or thermal sources have been considered to illustrate the utility of the approach. The integral transforms have been inverted by using a numerical inversion technique to obtain the components of displacement, stress, changes in volume fraction field and temperature distribution in the physical domain. The effect of dependence of modulus of elasticity on the components of stress, changes in volume fraction field and temperature distribution are illustrated graphically for a specific model. Different special cases are also deduced.

      • KCI등재

        Vertical-slate-like MoS2 nanostructures on 3D-Ni-foam for binder-free, lowcost, and scalable solid-state symmetric supercapacitors

        Rajneesh Kumar Mishra,Ajay Kumar Kushwaha,김승엽,서승기,진성훈 한국물리학회 2019 Current Applied Physics Vol.19 No.1

        Here, we report binder-free vertical-slate-like MoS2 nanostructures on 3D-Ni-Foam (VSL-MoS2@3D-Ni foam) for low-cost high-performance solid-state symmetric supercapacitors (SSCs). The cost-effective, ecofriendly and scalable solvothermal method and its direct incorporation of VSL-MoS2@3D-Ni-foam yield SSCs with excellent electrochemical properties with a wide potential window of 1.0 V. Furthermore, high specific capacitance of 34.1 F g−1 at a current density of 1.3 A g−1, an energy density of 4.7Wh kg−1 at a high-power density of 650Wkg−1, and excellent stability with ∼82.5% capacitance retention after 10,000 cycles were demonstrated even for SSCs with a binder free MoS2 electrodes on 3D-Ni-foam. These excellent features of the SSCs with VSLMoS2@ 3D-Ni-foam substantiate their potential opportunity for future energy applications.

      • Representation of fundamental solution and vibration of waves in photothermoelastic under MGTE model

        Rajneesh Kumar,Nidhi Sharma,Supriya Chopra,Anil K. Vashishth Techno-Press 2023 Ocean systems engineering Vol.13 No.2

        In this paper, Moore-Gibson-Thompson theory of thermoelasticity is considered to investigate the fundamental solution and vibration of plane wave in an isotropic photothermoelastic solid. The governing equations are made dimensionless for further investigation. The dimensionless equations are expressed in terms of elementary functions by assuming time harmonic variation of the field variables (displacement, temperature distribution and carrier density distribution). Fundamental solutions are constructed for the system of equations for steady oscillation. Also some preliminary properties of the solution are explored. In the second part, the vibration of plane waves are examined by expressing the governing equation for two dimensional case. It is found that for the non-trivial solution of the equation yield that there exist three longitudinal waves which advance with the distinct speed, and one transverse wave which is free from thermal and carrier density response. The impact of various models (i)Moore-Gibson-Thomson thermoelastic (MGTE)(2019), (ii) Lord and Shulman's (LS)(1967) , (iii) Green and Naghdi type-II(GN-II)(1993) and (iv) Green and Naghdi type-III(GN-III)(1992) on the attributes of waves i.e., phase velocity, attenuation coefficient, specific loss and penetration depth are elaborated by plotting various figures of physical quantities. Various particular cases of interest are also deduced from the present investigations. The results obtained can be used to delineate various semiconductor elements during the coupled thermal, plasma and elastic wave and also find the application in the material and engineering sciences.

      • KCI등재

        Thermoelastic beam in modified couple stress thermoelasticity induced by laser pulse

        Rajneesh Kumar,Shaloo Devi 사단법인 한국계산역학회 2017 Computers and Concrete, An International Journal Vol.19 No.6

        In this study, the thermoelastic beam in modified couple stress theory due to laser source and heat flux is investigated. The beam are heated by a non-Guassian laser pulse and heat flux. The Euler Bernoulli beam theory and the Laplace transform technique are applied to solve the basic equations for coupled thermoelasticity. The simply-supported and isothermal boundary conditions are assumed for both ends of the beam. A general algorithm of the inverse Laplace transform is developed. The analytical results have been numerically analyzed with the help of MATLAB software. The numerically computed results for lateral deflection, thermal moment and axial stress due to laser source and heat flux have been presented graphically. Some comparisons have been shown in figures to estimate the effects of couple stress on the physical quantities. A particular case of interest is also derived. The study of laser-pulse find many applications in the field of biomedical, imaging processing, material processing and medicine with regard to diagnostics and therapy.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼