RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Influence of substrate temperature on physical properties of sprayed Zn0.85Mn0.15O films

        L. Raja Mohan Reddy,P. Prathap,K.T. Ramakrishna Reddy 한국물리학회 2009 Current Applied Physics Vol.9 No.3

        Zn1-xMnxO thin films have been synthesized by chemical spray pyrolysis at different substrate temperatures in the range, 250–450 ℃ for a manganese composition, x = 15%, on corning 7059 glass substrates. The as-grown layers were characterized to evaluate their chemical and physical behaviour with substrate temperature. The change of dopant level in ZnO films with substrate temperature was analysed using X-ray photoelectron spectroscope measurements. The X-ray diffraction studies revealed that all the films were strongly oriented along the (002) orientation that correspond to the hexagonal wurtzite structure. The crystalline quality of the layers increased with the increase of substrate temperature up to 400 ℃ and decreased thereafter. The crystallite size of the films varied in the range, 14–24 nm. The surface morphological studies were carried out using atomic force microscope and the layers showed a lower surface roughness of 4.1 nm. The optical band gap of the films was ~3.35 eV and the electrical resistivity was found to be high, ~104Ωcm. The films deposited at higher temperatures (>350 ℃) showed ferromagnetic behaviour at 10 K. Zn1-xMnxO thin films have been synthesized by chemical spray pyrolysis at different substrate temperatures in the range, 250–450 ℃ for a manganese composition, x = 15%, on corning 7059 glass substrates. The as-grown layers were characterized to evaluate their chemical and physical behaviour with substrate temperature. The change of dopant level in ZnO films with substrate temperature was analysed using X-ray photoelectron spectroscope measurements. The X-ray diffraction studies revealed that all the films were strongly oriented along the (002) orientation that correspond to the hexagonal wurtzite structure. The crystalline quality of the layers increased with the increase of substrate temperature up to 400 ℃ and decreased thereafter. The crystallite size of the films varied in the range, 14–24 nm. The surface morphological studies were carried out using atomic force microscope and the layers showed a lower surface roughness of 4.1 nm. The optical band gap of the films was ~3.35 eV and the electrical resistivity was found to be high, ~104Ωcm. The films deposited at higher temperatures (>350 ℃) showed ferromagnetic behaviour at 10 K.

      • SCISCIESCOPUS

        Investigations of optical and luminescence features of Sm<sup>3+</sup> doped Li<sub>2</sub>O-MO-B<sub>2</sub>O<sub>3</sub> (M =Mg/Ca/Sr/Ba) glasses mixed with different modifier oxides as an orange light emitting phosphor for WLED's

        Kirdsiri, K.,Raja Ramakrishna, R.,Damdee, B.,Kim, H.J.,Kaewjaeng, S.,Kothan, S.,Kaewkhao, J. Elsevier 2018 JOURNAL OF ALLOYS AND COMPOUNDS Vol.749 No.-

        <P><B>Abstract</B></P> <P>The glass composition of 50Li<SUB>2</SUB>O-20MO-29.7B<SUB>2</SUB>O<SUB>3</SUB>-0.3Sm<SUB>2</SUB>O<SUB>3</SUB> (M = Mg/Ca/Sr/Ba), has been synthesized by the conventional melt quench technique. Density measurements were studied and shows large for LBaBSm glass sample (2.9049 g/cm<SUP>3</SUP>) than any other alkali species (Mg/Ca/Sr). Variation in density is due to the ionic radii of the alkali ion species (M = Mg/Ca/Sr/Ba). Optical absorption spectra of Sm<SUP>3+</SUP> doped LMgB, LCaB, LSrB and LBaB glass systems were studied and shows very intense peaks at NIR region. The emission and excitation spectra of these glasses were studied and emission spectra shows green, yellow and reddish - orange emission bands at 563, 600, 646 and 706 nm. Judd–Ofelt (JO) intensity analysis had been performed and JO parameters were estimated for 0.3 mol.% Sm<SUB>2</SUB>O<SUB>3</SUB> doped 50Li<SUB>2</SUB>O-20MO-29.7B<SUB>2</SUB>O<SUB>3</SUB> (M = Mg/Ca/Sr/Ba) glasses. Radiative properties such as transition probabilities, stimulated emission cross-sections and branching ratios were estimated by using JO parameters and luminescence spectra. The decay curves of these glasses exhibit single exponential nature. The CCT values obtained from CIE for these glass samples shows 1663 K for indicating orange emission under 403 nm excitation wavelength.</P> <P><B>Highlights</B></P> <P> <UL> <LI> J-O parameters of Li2O-MO-B2O3 (M = Mg/Ca/Sr/Ba) glass doped Sm<SUP>3+</SUP> studied. </LI> <LI> LBaBSm0.3 glass show more asymmetry around Sm<SUP>3+</SUP> ion than other transition ions. </LI> <LI> LBaBSm0.3 glass emit bright reddish-orange luminescence at 403 nm excitation. </LI> <LI> The CCT values obtained for glass samples around 1663 K in orange emission. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>UV–Vis–NIR spectra of LMOBSm0.3 (M = Mg, Ca, Sr, Ba) samples.</P> <P>[DISPLAY OMISSION]</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼