RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Finite element model updating of jointed structure based on modal and strain frequency response function

        Zhan Ming,Guo Qintao,Yue Lin,Zhang Baoqiang 대한기계학회 2019 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.33 No.10

        To acquire a reasonable model for structural dynamic strength analysis, a bottom-up finite element modeling and updating methodology based on multi responses is proposed. The fundamental principles of structural dynamics analysis and model updating were introduced, and the proposed strategy was applied to the case study of an L-shaped jointed structure. Components of the jointed structure were modeled sequentially, and inaccurate model parameters were updated based on the corresponding experimental modal results in the first stage. In the second stage, components were connected together by bolts. The joint interfaces were represented by thin-layer elements, and local joint parameters were updated based on strain frequency response function (FRF). Finally, the precision of finite element model (FEM) was validated by acceleration frequency response function. The results indicated that the proposed methodology is able to reduce model simulation errors in both components and the overall jointed structure. Not only can the updated model of a jointed structure reproduce the experimental results used in updating, but also predict responses that are not used in the process of model updating.

      • KCI등재

        Identification of the dynamic parameters of active magnetic bearings based on the transfer matrix model updating method

        Yuanping Xu,Jin Zhou,Chaowu Jin,Qintao Guo 대한기계학회 2016 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.30 No.7

        The stiffness and damping coefficients of Active magnetic bearings (AMBs) have a great impact on the dynamics of a high-speed rotor AMB system, from its bending critical speed to the modes of its vibration and stability. To accurately obtain the stiffness and damping coefficients of AMBs, this study proposes a new identification approach based on the transfer matrix model updating method. By minimizing the error between the unbalance response calculated through the transfer matrix approach and the experimental measurements, the stiffness and damping coefficients are obtained using the simplex optimization algorithm based on the updating method of the model. According to the experimental data, we identify the parameters from 20 Hz to 260 Hz (1200 rpm to 15600 rpm). To verify the identified results, a finite element rotor AMBs model is created, and the theoretical unbalance response is predicted using the identified parameters. The theoretical unbalance responses closely coincide with the experimental measurements, indicating the effectiveness of the proposed method.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼