RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Numerical analysis of melt migration and solidification behavior in LBR severe accident with MPS method

        Jinshun Wang,Qinghang Cai,Ronghua Chen,Xinkun Xiao,Yonglin Li,Wenxi Tian,Suizheng Qiu,G.H. Su 한국원자력학회 2022 Nuclear Engineering and Technology Vol.54 No.1

        In Lead-based reactor (LBR) severe accident, the meltdown and migration inside the reactor core will lead to fuel fragment concentration, which may further cause re-criticality and even core disintegration. Accurately predicting the migration and solidification behavior of melt in LBR severe accidents is of prime importance for safety analysis of LBR. In this study, the Moving Particle Semi-implicit (MPS) method is validated and used to simulate the migration and solidification behavior. Two main surface tension models are validated and compared. Meanwhile, the MPS method is validated by the l-plate solidification test. Based on the improved MPS method, the migration and solidification behavior of melt in LBR severe accident was studied furthermore. In the Pb–Bi coolant, the melt flows upward due to density difference. The migration and solidification behavior are greatly affected by the surface tension and viscous resistance varying with enthalpy. The whole movement process can be divided into three stages depending on the change in velocity. The heat transfer of core melt is determined jointly by two heat transfer modes: flow heat transfer and solid conductivity. Generally, the research results indicate that the MPS method has unique advantage in studying the migration and solidification behavior in LBR severe accident.

      • SCIESCOPUSKCI등재

        Simulation on mass transfer at immiscible liquid interface entrained by single bubble using particle method

        Dong, Chunhui,Guo, Kailun,Cai, Qinghang,Chen, Ronghua,Tian, Wenxi,Qiu, Suizheng,Su, G.H. Korean Nuclear Society 2020 Nuclear Engineering and Technology Vol.52 No.6

        As a Lagrangian particle method, Moving Particle Semi-implicit (MPS) method has great capability to capture interface/surface. In recent years, the multiphase flow simulation using MPS method has become one of the important directions of its developments. In this study, some key methods for multiphase flow have been introduced. The interface tension model in multiphase flow is modified to maintain the smooth of the interface and suitable for the three-phase flow. The mass transfer at immiscible liquid interface entrained by single bubble which could occur in Molten Core-Concrete Interaction (MCCI) has been investigated using this particle method. With the increase of bubble size, the height of entrainment column also increases, but the time of film rupture is slightly different. With the increase of density ratio between the two liquids, the height of entrained column decreases significantly due to the decreasing buoyancy of the denser liquid in the lighter liquid. In addition, the larger the interface tension coefficient is, the more rapidly the entrained denser liquid falls. This study validates that the MPS method has shown great performance for multiphase flow simulation. Besides, the influence of physical parameters on the mass transfer at immiscible interface has also been investigated in this study.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼