RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Antioxidant Action of a Chrysanthemum morifolium Extract Protects Rat Brain Against Ischemia and Reperfusion Injury

        Guo-Hua Lin,Lin Lin,Hua-Wei Liang,Xin Ma,Jing-Ye Wang,Li-Ping Wu,Hui-Di Jiang,Iain C. Bruce,Qiang Xia 한국식품영양과학회 2010 Journal of medicinal food Vol.13 No.2

        The present study evaluated the potential neuroprotective effect and underlying mechanism of the total flavones extracted from Chrysanthemum morifolium (TFCM) against ischemia/reperfusion (I/R) injury. An animal model of cerebral ischemia was established by occluding the right middle cerebral artery for 90 minutes followed by reperfusion for 22 hours. The neurobehavioral scores, infarct area, and hemispheric edema were evaluated. The superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and reactive oxygen species (ROS) level in brain were also measured. The results showed that pretreatment with TFCM significantly decreased the neurological deficit scores, percentage of infarction, and brain edema and attenuated the decrease in SOD activity, the elevation of MDA content, and the generation of ROS. In isolated brain mitochondria, Ca2+-induced swelling was attenuated by pretreatment with TFCM, and this effect was antagonized by atractyloside. These results showed that pretreatment with TFCM provides significant protection against cerebral I/R injury in rats by, at least in part, its antioxidant action and consequent inhibition of mitochondrial swelling.

      • KCI등재

        A simple approach to the elasto-plastic coupling analyses of circular tunnels in confining pressure-dependent strain-softening rock masses

        Qiang Zhang,Cheng Li,Qiang Guo,Ming Min,Yanning Wang,Binsong Jiang 한국자원공학회 2017 Geosystem engineering Vol.20 No.5

        The conventional strain-softening behaviors which assume the strength parameters as the functions of the plastic strain have been studied using various methods. However, rock-like materials have also been found to manifest pressure-dependent behavior for both elastic and plastic rock masses. The realization of the radial stress was found to be continuous, and gradually increased from supporting stress to in situ stress for the circular openings under hydrostatic pressure. The radial stress was spaced as numbers of sections, and each annulus was considered as an ideal plastic rock mass. The close-formed analytical solutions of each annulus can be easily obtained. Therefore, using the displacement continuum and stress boundary conditions, the dimensionless radius corresponding to the spaced radius could be derived. The radial stress and plastic shear strain at the inner radius of the outer adjacent annulus were employed to describe the material property evolution law. Then, the radii could be recursively obtained. Finally, for the conventional strain-softening rock masses, the pressure-dependent elastic rock and elasto-plastic coupling strain-softening rock masses were employed to validate the proposed approach. In this study, having completed the above steps, it was concluded that the results were in accordance with the numerical methods.

      • Thrust distribution of underwater salvage robot based on PSO optimization algorithm

        Jiang Yu An,Guo Gao Yang,Zhang Qiang 국제이네비해양경제학회 2023 International Journal of e-Navigation and Maritime Vol.20 No.-

        In order to solve the problem of improper thrust distribution of each thruster of underwater vehicle, the PSO optimization algorithm is used to solve the problem of thrust distribution. According to the spatial layout of the thruster, the algorithm model of the underwater vehicle propulsion system is established. The thrust input is carried out under the broken line search trajectory, and the simulation verifies the thrust allocation results of the PSO algorithm and the traditional pseudo-inverse method. The simulation results show that compared with the traditional algorithm. First of all, the PSO algorithm can set the physical threshold for each thruster to prevent the thruster from having too much thrust. Secondly, it can ensure that the thruster can turn with a reasonable torque to prevent the robot from drifting due to the large thrust gap. This paper provides a theoretical reference for thrust distribution of underwater salvage robot, and has practical engineering significance.

      • KCI등재

        Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (I): Experimental study

        Guo-Qiang Li,Fulin Gu,Jian Jiang,Feifei Sun 국제구조공학회 2017 Steel and Composite Structures, An International J Vol.23 No.4

        This paper experimentally studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Four beam-to-wall connection specimens with short and long embedded steel columns are tested under monotonic and cyclic loads, respectively. The influence of embedment length of columns on the failure mode and performance of connections is investigated. The results show that the length of embedded steel columns has significant effect on the failure mode of connections. A connection with a long embedded column has a better stiffness, loadbearing capacity and ductility than that of a short embedded column. The former fails due to the shear yielding of column web in the joint panel, while failure of the latter is initiated by the yielding of horizontal reinforcement in the wall due to the rigid rotation of the column. It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility.

      • KCI등재

        Dihydroartemisinin inhibits HepG2.2.15 proliferation by inducing cellular senescence and autophagy

        ( Jiang Zou ),( Qiang Ma ),( Ru Sun ),( Jiajing Cai ),( Hebin Liao ),( Lei Xu ),( Jingruo Xia ),( Guangcheng Huang ),( Lihua Yao ),( Yan Cai ),( Xiaowu Zhong ),( Xiaolan Guo ) 생화학분자생물학회(구 한국생화학분자생물학회) 2019 BMB Reports Vol.52 No.8

        Dihydroartemisinin (DHA) has been reported to possess anti-cancer activity against many cancers. However, the pharmacologic effect of DHA on HBV-positive hepatocellular carcinoma (HCC) remains unknown. Thus, the objective of the present study was to determine whether DHA could inhibit the proliferation of HepG2.2.15 cells and uncover the underlying mechanisms involved in the effect of DHA on HepG2.2.15 cells. We found that DHA effectively inhibited HepG2.2.15 HCC cell proliferation both in vivo and in vitro. DHA also reduced the migration and tumorigenicity capacity of HepG2.2.15 cells. Regarding the underlying mechanisms, results showed that DHA induced cellular senescence by up-regulating expression levels of proteins such as p-ATM, p-ATR, γ-H<sub>2</sub>AX, P53, and P21 involved in DNA damage response. DHA also induced autophagy (green LC3 puncta gathered together and LC3II/LC3I ratio increased through AKT-mTOR pathway suppression). Results also revealed that DHA-induced autophagy was not linked to senescence or cell death. TPP1 (telomere shelterin) overexpression could not rescue DHA-induced anticancer activity (cell proliferation). Moreover, DHA down-regulated TPP1 expression. Gene knockdown of TPP1 caused similar phenotypes and mechanisms as DHA induced phenotypes and mechanisms in HepG2.2.15 cells. These results demonstrate that DHA might inhibit HepG2.2.15 cells proliferation through inducing cellular senescence and autophagy. [BMB Reports 2019; 52(8): 520-525]

      • Review on Quantitative Measures of Robustness for Building Structures Against Disproportionate Collapse

        Jiang, Jian,Zhang, Qijie,Li, Liulian,Chen, Wei,Ye, Jihong,Li, Guo-Qiang Council on Tall Building and Urban Habitat Korea 2020 International journal of high-rise buildings Vol.9 No.2

        Disproportionate collapse triggered by local structural failure may cause huge casualties and economic losses, being one of the most critical civil engineering incidents. It is generally recognized that ensuring robustness of a structure, defined as its insensitivity to local failure, is the most acceptable and effective method to arrest disproportionate collapse. To date, the concept of robustness in its definition and quantification is still an issue of controversy. This paper presents a detailed review on about 50 quantitative measures of robustness for building structures, being classified into structural attribute-based and structural performance-based measures (deterministic and probabilistic). The definition of robustness is first described and distinguished from that of collapse resistance, vulnerability and redundancy. The review shows that deterministic measures predominate in quantifying structural robustness by comparing the structural responses of an intact and damaged structure. The attribute-based measures based on structural topology and stiffness are only applicable to elastic state of simple structural forms while the probabilistic measures receive growing interest by accounting for uncertainties in abnormal events, local failure, structural system and failure-induced consequences, which can be used for decision-making tools. There is still a lack of generalized quantifications of robustness, which should be derived based on the definition and design objectives and on the response of a structure to local damage as well as the associated consequences of collapse. Critical issues and recommendations for future design and research on quantification of robustness are provided from the views of column removal scenarios, types of structures, regularity of structural layouts, collapse modes, numerical methods, multiple hazards, degrees of robustness, partial damage of components, acceptable design criteria.

      • Progressive Collapse of Steel High-Rise Buildings Exposed to Fire: Current State of Research

        Jiang, Jian,Li, Guo-Qiang Council on Tall Building and Urban Habitat Korea 2018 International journal of high-rise buildings Vol.7 No.4

        This paper presents a review on progressive collapse mechanism of steel framed buildings exposed to fire. The influence of load ratios, strength of structural members (beam, column, slab, connection), fire scenarios, bracing systems, fire protections on the collapse mode and collapse time of structures is comprehensively reviewed. It is found that the key influencing factors include load ratio, fire scenario, bracing layout and fire protection. The application of strong beams, high load ratios, multi-compartment fires will lead to global downward collapse which is undesirable. The catenary action in beams and tensile membrane action in slabs contribute to the enhancement of structural collapse resistance, leading to a ductile collapse mechanism. It is recommended to increase the reinforcement ratio in the sagging and hogging region of slabs to not only enhance the tensile membrane action in the slab, but to prevent the failure of beam-to-column connections. It is also found that a frame may collapse in the cooling phase of compartment fires or under travelling fires. This is because that the steel members may experience maximum temperatures and maximum displacements under these two fire scenarios. An edge bay fire is more prone to induce the collapse of structures than a central bay fire. The progressive collapse of buildings can be effectively prevented by using bracing systems and fire protections. A combination of horizontal and vertical bracing systems as well as increasing the strength and stiffness of bracing members is recommended to enhance the collapse resistance. A protected frame dose not collapse immediately after the local failure but experiences a relatively long withstanding period of at least 60 mins. It is suggested to use three-dimensional models for accurate predictions of whether, when and how a structure collapses under various fire scenarios.

      • KCI등재

        Progressive collapse of steel-framed gravity buildings under parametric fires

        Jian Jiang,Wenyu Cai,Guo-Qiang Li,Wei Chen,Jihong Ye 국제구조공학회 2020 Steel and Composite Structures, An International J Vol.36 No.4

        This paper investigates the progressive collapse behavior of 3D steel-framed gravity buildings under fires with a cooling phase. The effect of fire protections and bracing systems on whether, how, and when a gravity building collapses is studied. It is found that whether a building collapses or not depends on the duration of the heating phase, and it may withstand a “short-hot” fire, but collapses under a mild fire or a “long-cool” fire. The collapse time can be conservatively determined by the time when the temperature of steel columns reaches a critical temperature of 550 °C. It is also found that the application of a higher level of fire protection may prevent the collapse of a building, but may also lead to its collapse in the cooling phase due to the delayed temperature increment in the heated members. The tensile membrane action in a heated slab can be resisted by a tensile ring around its perimeter or by tensile yielding lines extended to the edge of the frame. It is recommended for practical design that hat bracing systems should be arranged on the whole top floor, and a combination of perimeter and internal vertical bracing systems be used to mitigate the fire-induced collapse of gravity buildings. It is also suggested that beam-to-column connections should be designed to resist high tensile forces (up to yielding force) during the cooling phase of a fire.

      • A Review on Fire Safety Engineering: Key Issues for High-Rise Buildings

        Li, Guo-Qiang,Zhang, Chao,Jiang, Jian Council on Tall Building and Urban Habitat Korea 2018 International journal of high-rise buildings Vol.7 No.4

        This paper presents a state-of-the-art review on the design, research and education aspects of fire safety engineering (FSE) with a particular concern on high-rise buildings. FSE finds its root after Great Fire of Rome in 64 AD, followed by Great London Fire in 1666. The development of modern FSE is continuously driven by industry revolution, insurance community and government regulations. Now FSE has become a unique engineering discipline and is moving towards performance-based design since 1990s. The performance-based fire safety design (PBFSD) involves identification of fire safety goals, design objectives, establishment of performance criteria, and selection of proper solutions for fire safety. The determination of fire scenarios and design fires have now become major contents for PBFSD. To experience a rapid and positive evolution in design and research consistent with other engineering disciplines, it is important for fire safety engineering as a profession to set up a special educational system to deliver the next-generation fire safety engineers. High-rise buildings have their unique fire safety issues such as rapid fire and smoke spread, extended evacuation time, longer fire duration, mixed occupancies, etc., bringing more difficulties in ensuring life safety and protection of property and environment. A list of recommendations is proposed to improve the fire safety of high-rise buildings. In addition, some source information for specific knowledge and information on FSE is provided in Appendix.

      • KCI등재

        Simplified robustness assessment of steel framed structures under fire-induced column failure

        Binhui Jiang,Guo-Qiang Li,Michael C.H. Yam 국제구조공학회 2020 Steel and Composite Structures, An International J Vol.35 No.2

        This paper proposes a Global-Local Analysis Method (GLAM) to assess the progressive collapse of steel framed structures under fire-induced column failure. GLAM obtains the overall structural response by combining dynamic analysis of the heated column (local) with static analysis of the overall structure (global). Test results of two steel frames which explicitly consider the dynamic effect during fire-induced column failure were employed to validate the proposed GLAM. Results show that GLAM gives reasonable predictions to the test frames in terms of both whether to collapse and the displacement verse temperature curves. Besides, several case studies of a two-dimensional (2D) steel frame and a three-dimensional (3D) steel frame with concrete slabs were conducted by using GLAM. Results show that GLAM gives the same collapse predictions to the studied cases with nonlinear dynamic analysis of the whole structure model. Compared with nonlinear dynamic analysis of the whole structure model, GLAM saves approximately 70% and 99% CPU time for the cases of 2D and 3D steel frame, respectively. Results also show that the load level of a structure has notable effects on the restraint condition of a heated column in the structure.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼