RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        In silico molecular docking and molecular dynamic simulation of potential inhibitors of 3C-like main proteinase (3CLpro) from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) using selected african medicinal plants

        Isa Mustafa Alhaji,Mustapha Adam,Qazi Sahar,Raza Khalid,Allamin Ibrahim Alkali,Ibrahim Muhammad M.,Mohammed Mohammed M. 경희대학교 융합한의과학연구소 2022 Oriental Pharmacy and Experimental Medicine Vol.22 No.1

        The Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) is an infectious virus that causes mild to severe life-threatening upper respiratory tract infection. The virus emerged in Wuhan, China in 2019, and later spread across the globe. Its genome has been completely sequenced and based on the genomic information, the virus possessed 3C-Like Main Protease (3CLpro), an essential multifunctional enzyme that plays a vital role in the replication and transcription of the virus by cleaving polyprotein at eleven various sites to produce different non-structural proteins. This makes the protein an important target for drug design and discovery. Herein, we analyzed the interaction between the 3CLpro and potential inhibitory com- pounds identified from the extracts of Zingiber offinale and Anacardium occidentale using in silico docking and Molecular Dynamics (MD) Simulation. The crystal structure of SARS-CoV-2 main protease in complex with 02J (5-Methylisoxazole- 3-carboxylic acid) and PEJ (composite ligand) (PDB Code: 6LU7, 2.16 Å) retrieved from Protein Data Bank (PDB) and subject to structure optimization and energy minimization. A total of twenty-nine compounds were obtained from the extracts of Z. offinale and the leaves of A. occidentale. These compounds were screened for physicochemical (Lipinski rule of five, Veber rule, and Egan filter), Pan-Assay Interference Structure, and pharmacokinetic properties to determine the Pharmaceutical Active Ingredients. Of the 29 compounds, only nineteen (19) possessed drug-likeness properties with efficient oral bioavailability and less toxicity. These compounds subjected to molecular docking analysis to determine their binding energies with the 3CLpro. The result of the analysis indicated that the free binding energies of the compounds ranged between − 5.08 and − 10.24 kcal/mol, better than the binding energies of 02j (− 4.10 kcal/mol) and PJE (− 5.07 kcal/ mol). Six compounds (CID_99615 = − 10.24 kcal/mol, CID_3981360 = 9.75 kcal/mol, CID_9910474 = − 9.14 kcal/mol, CID_11697907 = − 9.10 kcal/mol, CID_10503282 = − 9.09 kcal/mol and CID_620012 = − 8.53 kcal/mol) with good bind- ing energies further selected and subjected to MD Simulation to determine the stability of the protein–ligand complex. The results of the analysis indicated that all the ligands form stable complexes with the protein, although, CID_9910474 and CID_10503282 had a better stability when compared to other selected phytochemicals (CID_99615, CID_3981360, CID_620012, and CID_11697907).

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼