RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        One Pot Synthesis and Characterization of Alginate Stabilized Semiconductor Nanoparticles

        Sundarrajan, Parani,Eswaran, Prabakaran,Marimuthu, Alexander,Subhadra, Lakshmi Baddireddi,Kannaiyan, Pandian Korean Chemical Society 2012 Bulletin of the Korean Chemical Society Vol.33 No.10

        Uniform and well dispersed metal sulfide semiconductor nanoparticles incorporated into matrices of alginate biopolymer are prepared by using a facile in situ method. The reaction was accomplished by impregnation of alginate with divalent metal ions followed by reaction with thioacetamide. XRD analysis showed that the nanoparticles incorporated in the polymer matrix were of cubic structure with the average particle diameter of 1.8 to 4.8 nm. Field emission scanning electron microscopy and high resolution transmission electron microscopy images indicated that the particles were well dispersed and distributed uniformly in the matrices of alginate polymer. FT-IR spectra confirmed the presence of alginate in the nanocomposite. The crystalline nature and thermal stability of the alginate polymer was found to be influenced by the nature of the divalent metal ions used for the synthesis. The proposed method is considered to be a simple and greener approach for large scale synthesis of uniform sized nanoparticles.

      • KCI등재

        One Pot Synthesis and Characterization of Alginate Stabilized Semiconductor Nanoparticles

        Parani Sundarrajan,Prabakaran Eswaran,Alexander Marimuthu,Lakshmi Baddireddi Subhadra,Pandian Kannaiyan 대한화학회 2012 Bulletin of the Korean Chemical Society Vol.33 No.10

        Uniform and well dispersed metal sulfide semiconductor nanoparticles incorporated into matrices of alginate biopolymer are prepared by using a facile in situ method. The reaction was accomplished by impregnation of alginate with divalent metal ions followed by reaction with thioacetamide. XRD analysis showed that the nanoparticles incorporated in the polymer matrix were of cubic structure with the average particle diameter of 1.8 to 4.8 nm. Field emission scanning electron microscopy and high resolution transmission electron microscopy images indicated that the particles were well dispersed and distributed uniformly in the matrices of alginate polymer. FT-IR spectra confirmed the presence of alginate in the nanocomposite. The crystalline nature and thermal stability of the alginate polymer was found to be influenced by the nature of the divalent metal ions used for the synthesis. The proposed method is considered to be a simple and greener approach for large scale synthesis of uniform sized nanoparticles.

      • KCI등재

        Carbon nanosheets coated on zirconium oxide nanoplate nanocomposite for Zn2+ ion adsorption and reuse of spent adsorbent for fingerprint detection

        Bienvenu Gael Fouda-Mbanga,Eswaran Prabakaran,Kriveshini Pillay 한국화학공학회 2023 Korean Journal of Chemical Engineering Vol.40 No.4

        This work highlights a novel method for the synthesis of carbon nanosheets coated on zirconium oxide nanoplate (CNS/ZrO2NPs) nanocomposite that is used as an adsorbent for Zn2+ ions removal from water. CNS/ZrO2NPs nanocomposite was prepared using CNS and ZrO2NPs by a hydrothermal method. This nanocomposite proved to be a good adsorbent for Zn2+ ion uptake at maximum pH of 8 and dosage of 20 mg. The Temkin isotherm model represented the adsorption process followed by the Langmuir isotherm with a maximum adsorption capacity of 606.06 mg g−1, above other adsorbents that have been reported for the removal of zinc ions. The adsorption kinetic process was best described by the pseudo-second-order kinetics, and it was found that the adsorption followed a chemisorption process. The thermodynamic parameters, such as enthalpy (ΔH), Gibbs free energy (ΔG), and entropy (ΔS), revealed that the adsorption was exothermic, spontaneous, and not random during the process. This metal-loaded adsorbent Zn2+-CNS/ZrO2NPs nanocomposite furthermore was reused in latent fingerprint detection and did demonstrate good selectivity and sensitivity on different surfaces by two donors. Therefore, Zn2+-CNS/ZrO2NPs nanocomposite may be reutilized as a good fingerprint marking agent in latent fingerprint (LFP) identification to circumvent secondary environmental pollution by the release of a spent adsorbent.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼