RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Evaluation of Environmental Factors to Determine the Distribution of Functional Feeding Groups of Benthic Macroinvertebrates Using an Artificial Neural Network

        박영석,Sovan Lek,전태수,Piet F.M. Verdonschot 한국생태학회 2008 Journal of Ecology and Environment Vol.31 No.3

        Functional feeding groups (FFGs) of benthic macroinvertebrates are guilds of invertebrate taxa that obtain food in similar ways, regardless of their taxonomic affinities. They can represent a heterogeneous assemblage of benthic fauna and may indicate disturbances of their habitats. The proportion of different groups can change in response to disturbances that affect the food base of the system, thereby offering a means of assessing disruption of ecosystem functioning. In this study, we used benthic macroinvertebrate communities collected at 650 sites of 23 different water types in the province of Overijssel, The Netherlands. Physical and chemical environmental factors were measured at each sampling site. Each taxon was assigned to its corresponding FFG based on its food resources. A multilayer perceptron (MLP) using a backpropagation algorithm, a supervised artificial neural network, was applied to evaluate the influence of environmental variables to the FFGs of benthic macroinvertebrates through a sensitivity analysis. In the evaluation of input variables, the sensitivity analysis with partial derivatives demonstrates the relative importance of influential environmental variables on the FFG, showing that different variables influence the FFG in various ways. Collector-filterers and shredders were mainly influenced by Ca²+ and width of the streams, and scrapers were influenced mostly with Ca²+ and depth, and predators were by depth and pH. Ca²+ and depth displayed relatively high influence on all four FFGs, while some variables such as pH, %gravel, %silt, and %bank affected specific groups. This approach can help to characterize community structure and to ecologically assess target ecosystems. Functional feeding groups (FFGs) of benthic macroinvertebrates are guilds of invertebrate taxa that obtain food in similar ways, regardless of their taxonomic affinities. They can represent a heterogeneous assemblage of benthic fauna and may indicate disturbances of their habitats. The proportion of different groups can change in response to disturbances that affect the food base of the system, thereby offering a means of assessing disruption of ecosystem functioning. In this study, we used benthic macroinvertebrate communities collected at 650 sites of 23 different water types in the province of Overijssel, The Netherlands. Physical and chemical environmental factors were measured at each sampling site. Each taxon was assigned to its corresponding FFG based on its food resources. A multilayer perceptron (MLP) using a backpropagation algorithm, a supervised artificial neural network, was applied to evaluate the influence of environmental variables to the FFGs of benthic macroinvertebrates through a sensitivity analysis. In the evaluation of input variables, the sensitivity analysis with partial derivatives demonstrates the relative importance of influential environmental variables on the FFG, showing that different variables influence the FFG in various ways. Collector-filterers and shredders were mainly influenced by Ca²+ and width of the streams, and scrapers were influenced mostly with Ca²+ and depth, and predators were by depth and pH. Ca²+ and depth displayed relatively high influence on all four FFGs, while some variables such as pH, %gravel, %silt, and %bank affected specific groups. This approach can help to characterize community structure and to ecologically assess target ecosystems.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼