RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Aerodynamic characteristics of tall buildings with porous double-skin façades: State of the art and future perspectives

        Petar Škvorc,Hrvoje Kozmar 한국풍공학회 2021 Wind and Structures, An International Journal (WAS Vol.33 No.3

        Double-skin façades (DSFs) have been increasingly implemented on tall buildings with the goal of improving building energy efficiency, natural ventilation and visual appearance. It is commonly known that wind and earthquakes represent major environmental load types impacting tall buildings. However, at this point, the aerodynamic characteristics of tall buildings equipped with porous façades are still relatively unknown, although it may be expected that the addition of porous outer skins will substantially affect the overall building aerodynamics. The scope of the present study is therefore to carefully review all the relevant parameters playing an important role in the aerodynamic characteristics of tall buildings with porous façades. Fluid flow and turbulence through porous surfaces were reviewed first with an emphasis on the wake and pressure drop behind perforated plates to analyze the phenomena of fundamental fluid mechanics relevant for porous surfaces. As the inflow characteristics predominantly dictate the aerodynamic characteristics of tall buildings, it is therefore useful to review major wind types, including the atmospheric boundary layer (ABL) and strong local winds, which have previously proved to cause major structural damage and failure. In order to be able to properly assess the aerodynamic loading of tall buildings with porous façades, it is necessary to understand the aerodynamic features of tall buildings with smooth surfaces. For this reason, the aerodynamic performance of smooth tall buildings was reviewed, as were the design features commonly adopted to mitigate adverse wind effects. The existing and rather sparse current knowledge of the aerodynamic characteristics of porous DSFs of high- and lowrise buildings is outlined. Based on the provided information, it is clear that a substantial amount of knowledge still needs to be acquired in the future in regard to various aerodynamic features of tall buildings with porous DSFs, particularly concerning wind loads, building energy efficiency, pedestrian wind comfort, renewable energy aspects, air pollution dispersion and dilution. It is expected that the optimal approach to advancing this topic is in combining field measurements, laboratory experiments and computational modeling.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼