RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Tailoring Hydrogel Composition and Stiffness to Control Smooth Muscle Cell Differentiation in Bioprinted Constructs

        Xuan Zongzhe,Peng Qiuyue,Larsen Thomas,Gurevich Leonid,de Claville Christiansen Jesper,Zachar Vladimir,Pennisi Cristian Pablo 한국조직공학과 재생의학회 2023 조직공학과 재생의학 Vol.20 No.2

        BACKGROUND: Reliable in vitro cellular models are needed to study the phenotypic modulation of smooth muscle cells (SMCs) in health and disease. The aim of this study was to optimize gelatin methacrylate (GelMA)/alginate hydrogels for bioprinting three-dimensional (3D) SMC constructs. METHODS: Four different hydrogel groups were prepared by mixing different concentrations (% w/v) of GelMA and alginate: G1 (5/1.5), G2 (5/3), G3 (7.5/1.5), and G4 (7.5/3). GelMA 10% was used as control (G5). A circular structure containing human bladder SMCs was fabricated by using an extrusion-based bioprinter. The effects of the mixing ratios on printability, viability, proliferation, and differentiation of the cells were investigated. RESULTS: Rheological analysis showed that the addition of alginate significantly stabilized the change in mechanical properties with temperature variations. The group with the highest GelMA and alginate concentrations (G4) exhibited the highest viscosity, resulting in better stability of the 3D construct after crosslinking. Compared to other hydrogel compositions, cells in G4 maintained high viability ([80%), exhibited spindle-shaped morphology, and showed a significantly higher proliferation rate within an 8-day period. More importantly, G4 provided an optimal environment for the induction of a SMC contractile phenotype, as evidenced by significant changes in the expression of marker proteins and morphological parameters. CONCLUSION: Adjusting the composition of GelMA/alginate hydrogels is an effective means of controlling the SMC phenotype. These hydrogels support bioprinting of 3D models to study phenotypic smooth muscle adaptation, with the prospect of using the constructs in the study of therapies for the treatment of urethral strictures.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼