RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Evaluation of Endophytic Colonization of Citrus sinensis and Catharanthus roseus Seedlings by Endophytic Bacteria

        Lacava Paulo Teixeira,Araujo Welington Luiz,Azevedo Joao Lucio The Microbiological Society of Korea 2007 The journal of microbiology Vol.45 No.1

        Over the last few years, the endophytic bacterial community associated with citrus has been studied as an important component interacting with Xylella fastidiosa, the causal agent of citrus variegated chlorosis(CVC). This bacterium may also colonize some model plants, such as Catharanthus roseus and Nicotiana clevelandii. In the present study, we compared the endophytic colonization of Citrus sinensis and Catharanthus rose us using the endophytic bacteria Klebsiella pneumoniae. We chose an appropriate strain, K. pneumoniae 342 (Kp342), labeled with the GFP gene. This strain was inoculated onto seedlings of C. sinensis and C. roseus. The isolation frequency was determined one week after the inoculation and the endophytic colonization of K. pneumoniae was observed using fluorescence microscopy. Although the endophytic bacterium was more frequently isolated from C. roseus than from C. sinensis, the colonization profiles for both host plants were similar, suggesting that C. roseus could be used as a model plant to study the interaction between endophytic bacteria and X. fastidiosa.

      • KCI등재

        Analysis of the bacterial community in glassy-winged sharpshooter heads

        Paulo Teixeira LACAVA,Jennifer PARKER,Fernando Dini ANDREOTE,Francisco DINI-ANDREOTE,José Luiz. RAMIREZ,Thomas A. MILLER 한국곤충학회 2007 Entomological Research Vol.37 No.4

        The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is an important vector of various strains of Xylella fastidiosa, which cause disease in a variety of economically important plants. These diseases include citrus variegated chlorosis, oleander leaf scorch and Pierce’'s Disease of grapevines. Symbiotic control (SC) is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace the pathogenic strains of X. fastidiosa. Candidate endophytes for use in SC must occupy the xylem of host plants and attach to the pre-cibarium and cibarium of sharpshooter insects in order to have access to the pathogen. The study of the bacterial community of GWSS heads by isolation and denaturing gradient gel electrophoresis (DGGE) revealed the presence of species that may be suitable for use in SC. In addition, the results indicated that two important factors, insect age and choice of host plant, affect the composition of the bacterial community in GWSS heads. The main bacterial genera isolated as colonizers of GWSS heads were identified, using partial 16S rRNA gene sequencing, as Bacillus, Pseudomonas, Pedobacter and Methylobacterium, as well as the species Curtobacterium flaccumfaciens. DGGE patterns revealed a diversity of endophytic species able to colonize the GWSS head. The main genera isolated in culture were also identified using this technique. Principal component analysis (PCA) from polymerase chain reaction (PCR)-DGGE patterns indicated that the bacteria inhabiting the GWSS head are similar to those found as endophytes inside the host plants, and that insect developmental stage and preferential feeding on one host plant species over another are important factors in determining the composition of the bacterial community in the GWSS head. However, a shift in host plants for a small period of time did not cause changes in the compositions of these communities.

      • KCI등재

        Evaluation of Endophytic Colonization of Citrus sinensis and Catharanthus roseus Seedlings by Endophytic Bacteria

        Paulo Teixeira Lacava,Welington Luiz Araujo,Joao Lucio Azevedo 한국미생물학회 2007 The journal of microbiology Vol.45 No.1

        Over the last few years, the endophytic bacterial community associated with citrus has been studied as an important component interacting with Xylella fastidiosa, the causal agent of citrus variegated chlorosis(CVC). This bacterium may also colonize some model plants, such as Catharanthus roseus and Nicotiana clevelandii. In the present study, we compared the endophytic colonization of Citrus sinensis and Catharanthus roseus using the endophytic bacteria Klebsiella pneumoniae. We chose an appropriate strain, K. pneumoniae 342 (Kp342), labeled with the GFP gene. This strain was inoculated onto seedlings of C. sinensis and C. roseus. The isolation frequency was determined one week after the inoculation and the endophytic colonization of K. pneumoniae was observed using fluorescence microscopy. Although the endophytic bacterium was more frequently isolated from C. roseus than from C. sinensis, the colonization profiles for both host plants were similar, suggesting that C. roseus could be used as a model plant to study the interaction between endophytic bacteria and X. fastidiosa.

      • KCI등재
      • SCIESCOPUSKCI등재

        The Endophyte Curtobacterium flaccumfaciens Reduces Symptoms Caused by Xylella fastidiosa in Catharanthus roseus

        Lacava, Paulo Teixeira,Li, Wenbin,Araujo, Welington Luiz,Azevedo, Joao Lucio,Hartung, John Stephen The Microbiological Society of Korea 2007 The journal of microbiology Vol.45 No.5

        Citrus variegated chlorosis (CVC) is a disease of the sweet orange [Citrus sinensis (L.)], which is caused by Xylella fastidiosa subsp. pauca, a phytopathogenic bacterium that has been shown to infect all sweet orange cultivars. Sweet orange trees have been occasionally observed to be infected by Xylella fastidiosa without evidencing severe disease symptoms, whereas other trees in the same grove may exhibit severe disease symptoms. The principal endophytic bacterial species isolated from such CVC-asymptomatic citrus plants is Curtobacterium flaccumfaciens. The Madagascar periwinkle [Citrus sinensis (L.)] is a model plant which has been used to study X. fastidiosa in greenhouse environments. In order to characterize the interactions of X. fastidiosa and C. flaccumfaciens, periwinkle plants were inoculated separately with C. flaccumfaciens, X. fastidiosa, and both bacteria together. The number of flowers produced by the plants, the heights of the plants, and the exhibited disease symptoms were evaluated. PCR-primers for C. flaccumfaciens were designed in order to verify the presence of this endophytic bacterium in plant tissue, and to complement an existing assay for X. fastidiosa. These primers were capable of detecting C. flaccumfaciens in the periwinkle in the presence of X. fastidiosa. X. fastidiosa induced stunting and reduced the number of flowers produced by the periwinkle. When C. flaccumfaciens was inoculated together with X. fastidiosa, no stunting was observed. The number of flowers produced by our doubly- inoculated plants was an intermediate between the number produced by the plants inoculated with either of the bacteria separately. Our data indicate that C. flaccumfaciens interacted with X. fastidiosa in C. roseus, and reduced the severity of the disease symptoms induced by X. fastidiosa. Periwinkle is considered to be an excellent experimental system by which the interaction of C. flaccumfaciens and other endophytic bacteria with X. fastidiosa can be studied.

      • KCI등재

        Transmission of Methylobacterium mesophilicum by Bucephalogonia xanthophis for Paratransgenic Control Strategy of Citrus Variegated Chlorosis

        Cláudia Santos Gai,Paulo Teixeira Lacava,Maria Carolina Quecine,Marie-Christine Auriac,João Roberto Spotti Lopes,Welington Luiz Araújo,Thomas Albert Miller,João Lúcio Azevedo 한국미생물학회 2009 The journal of microbiology Vol.47 No.4

        Methylobacterium mesophilicum, originally isolated as an endophytic bacterium from citrus plants, was genetically transformed to express green fluorescent protein (GFP). The GFP-labeled strain of M. mesophilicum was inoculated into Catharanthus roseus (model plant) seedlings and further observed colonizing its xylem vessels. The transmission of this endophyte by Bucephalogonia xanthophis, one of the insect vectors that transmit Xylella fastidiosa subsp. pauca, was verified by insects feeding from fluids containing the GFP bacterium followed by transmission to plants and isolating the endophyte from C. roseus plants. Forty-five days after inoculation, the plants exhibited endophytic colonization by M. mesophilicum, confirming this bacterium as a nonpathogenic, xylem-associated endophyte. Our data demonstrate that M. mesophilicum not only occupy the same niche of X. fastidiosa subsp. pauca inside plants but also may be transmitted by B. xanthophis. The transmission, colonization, and genetic manipulation of M. mesophilicum is a prerequisite to examining the potential use of symbiotic control to interrupt the transmission of X. fastidiosa subsp. pauca, the bacterial pathogen causing Citrus variegated chlorosis by insect vectors.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼