RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Analysis of Power Device Failure Under Avalanche Mode Conduction

        P. Alexakis,O. Alatise,J. Hu,S. Jahdi,J. Ortiz Gonzalez,L. Ran,P. A. Mawby 전력전자학회 2015 ICPE(ISPE)논문집 Vol.2015 No.6

        This paper investigates the physics of device failure during avalanche for 1.2 kV SiC MOSFETs, silicon MOSFETs and silicon IGBTs. The impact of ambient temperature, initial conditions of the device prior to avalanche breakdown and the avalanche duration is explored for the different technologies. Two types of tests were conducted namely (i) constant avalanche duration with different peak avalanche currents and (ii) constant peak avalanche current with different avalanche durations. SiC MOSFETs are shown to be the most rugged technology followed by the silicon IGBT and the silicon MOSFET. The material properties of SiC suppress the triggering of the parasitic BJT that causes thermal runaway during avalanche.

      • Modeling of Temperature Dependent Parasitic Gate Turn-On in Silicon IGBTs

        R. Bonyadi,O. Alatise,S. Jahdi,J. Ortiz Gonzalez,L. Ran,P. A. Mawby 전력전자학회 2015 ICPE(ISPE)논문집 Vol.2015 No.6

        Parasitic turn-on can cause unintentional triggering of the IGBTs since the discharge current of the Miller capacitance coupled with high dV/dt can activate a device that should be off. The short circuit current resulting from parasitic turn-on coupled with the high voltage causes significant power dissipation which can be a reliability issue. This issue is exacerbated by higher ambient temperatures since the negative temperature coefficient of the IGBT’s threshold voltage as well as the positive temperature coefficient of the minority carrier lifetime will increase the peak and duration of the short circuit current. Accurate modeling of the shoot-through power and its temperature dependency is important for circuit designers when designing mitigation techniques like multiple resistive paths and bipolar gate drivers. The physics-based model proposed in this paper can produce accurate results with good matching over temperature. The model improves on compact circuit models based on lumped parameters.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼