RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Investigation of AlInN HEMT structures with different AlGaN buffer layers grown on sapphire substrates by MOCVD

        O. Kelekci,P. Tasli,S.S. Cetin,M. Kasap,S. Ozcelik,E. Ozbay 한국물리학회 2012 Current Applied Physics Vol.12 No.6

        We investigate the structural and electrical properties of AlxIn1-xN/AlN/GaN heterostructures with AlGaN buffers grown by MOCVD, which can be used as an alternative to AlInN HEMT structures with GaN buffer. The effects of the GaN channel thickness and the addition of a content graded AlGaN layer to the structural and electrical characteristics were studied through variable temperature Hall effect measurements, high resolution XRD, and AFM measurements. Enhancement in electron mobility was observed in two of the suggested AlxIn1-xN/AlN/GaN/Al0.04Ga0.96N heterostructures when compared to the standard AlxIn1exN/AlN/GaN heterostructure. This improvement was attributed to better electron confinement in the channel due to electric field arising from piezoelectric polarization charge at the Al0.04Ga0.96N/GaN heterointerface and by the conduction band discontinuity formed at the same interface. If the growth conditions and design parameters of the AlxIn1-xN HEMT structures with AlGaN buffers can be modified further, the electron spillover from the GaN channel can be significantly limited and even higher electron mobilities, which result in lower two-dimensional sheet resistances, would be possible. We investigate the structural and electrical properties of AlxIn1-xN/AlN/GaN heterostructures with AlGaN buffers grown by MOCVD, which can be used as an alternative to AlInN HEMT structures with GaN buffer. The effects of the GaN channel thickness and the addition of a content graded AlGaN layer to the structural and electrical characteristics were studied through variable temperature Hall effect measurements, high resolution XRD, and AFM measurements. Enhancement in electron mobility was observed in two of the suggested AlxIn1-xN/AlN/GaN/Al0.04Ga0.96N heterostructures when compared to the standard AlxIn1exN/AlN/GaN heterostructure. This improvement was attributed to better electron confinement in the channel due to electric field arising from piezoelectric polarization charge at the Al0.04Ga0.96N/GaN heterointerface and by the conduction band discontinuity formed at the same interface. If the growth conditions and design parameters of the AlxIn1-xN HEMT structures with AlGaN buffers can be modified further, the electron spillover from the GaN channel can be significantly limited and even higher electron mobilities, which result in lower two-dimensional sheet resistances, would be possible.

      • KCI등재

        Anomalous Nernst Effects of [CoSiB/Pt] Multilayer Films

        O. Kelekci,H. N. Lee,T. W. Kim,H. Noh 한국자기학회 2013 Journal of Magnetics Vol.18 No.3

        We report a measurement for the anomalous Nernst effects induced by a temperature gradient in [CoSiB/Pt] multilayer films with perpendicular magnetic anisotropy. The Nernst voltage shows a characteristic hysteresis which reflects the magnetization of the film as in the case of the anomalous Hall effects. With a local heating geometry, we also measure the dependence of the anomalous Nernst voltage on the distance d from the heating element. It is roughly proportional to 1/d¹.³, which can be conjectured from the expected temperature gradient along the sample from the heat equation.

      • The structural and electrical evolution of chemical vapor deposition grown graphene by electron beam irradiation induced disorder

        Iqbal, M.Z.,Kelekci, O.,Iqbal, M.W.,Eom, J. Pergamon Press ; Elsevier Science Ltd 2013 Carbon Vol.59 No.-

        The defect formation mechanism in chemical vapor deposition grown single layer graphene devices has been investigated by increasing electron beam (e-beam) irradiation doses gradually up to 750e<SUP>-</SUP>/nm<SUP>2</SUP>. The evolution of D peaks in Raman spectra provides an evidence of strong lattice disorder due to e-beam irradiation. Particularly, the trajectory of D and G peak intensities ratio (I<SUB>D</SUB>/I<SUB>G</SUB>) suggests that the transformation of graphene from crystalline to the nanocrystalline and then towards amorphous form with increasing irradiation dose. The defect parameters were calculated by phenomenological model of amorphization trajectory for graphitic materials. The mobility decreasing gradually from ~1200 to ~80cm<SUP>2</SUP>/V s with gradual increase of irradiation dose, which implies the formation of localized states in e-beam irradiated graphene. The Dirac point is shifted towards negative gate voltage which indicates the n-doping in graphene with increasing e-beam irradiation dose.

      • KCI우수등재

        Anisotropic Electronic Transport of Graphene on a Nano-Patterned Substrate

        H. M. W. Khalil(칼릴 하피츠),O. Kelekci(켈렉시 오즈구르),H. Noha(노화용),Y. H. Xie(시에 야홍) 한국진공학회(ASCT) 2012 Applied Science and Convergence Technology Vol.21 No.5

        주기적인 나노트랜치 패턴이 있는 기판 위에 놓인 CVD 그래핀의 전도특성을 측정하였다. 나노트랜치에 대해 평행한 방향과 수직한 방향 사이에 전도특성의 큰 비등방성을 발견하였다. 전기 전도의 방향이 나노트랜치에 수직한 경우, 약한 한곳모임의 특성에 있어서도 큰 차이점이 발견되었는데, 이는 퍼텐셜 변조에 의해 생겨나는 전하밀도의 비균일성에 의해 생겨나는 것으로 해석된다. We report on the measurements of electronic transport properties of CVD graphene placed on a pre-patterned substrate with periodic nano trenches. A strong anisotropy has been observed between the transport parallel and perpendicular to the trenches. Characteristically different weak localization corrections have been also observed when the transport was perpendicular to the trench, which is interpreted as due to a density inhomogeneity generated by the potential modulations.

      • KCI등재

        Anisotropic Electronic Transport of Graphene on a Nano-Patterned Substrate

        칼릴 하피츠,켈렉시 오즈구르,노화용,시에 야홍,Khalil, H.M.W.,Kelekci, O.,Noh, H.,Xie, Y.H. The Korean Vacuum Society 2012 Applied Science and Convergence Technology Vol.21 No.5

        주기적인 나노트랜치 패턴이 있는 기판 위에 놓인 CVD 그래핀의 전도특성을 측정하였다. 나노트랜치에 대해 평행한 방향과 수직한 방향 사이에 전도특성의 큰 비등방성을 발견하였다. 전기 전도의 방향이 나노트랜치에 수직한 경우, 약한 한곳모임의 특성에 있어서도 큰 차이점이 발견되었는데, 이는 퍼텐셜 변조에 의해 생겨나는 전하밀도의 비균일성에 의해 생겨나는 것으로 해석된다. We report on the measurements of electronic transport properties of CVD graphene placed on a pre-patterned substrate with periodic nano trenches. A strong anisotropy has been observed between the transport parallel and perpendicular to the trenches. Characteristically different weak localization corrections have been also observed when the transport was perpendicular to the trench, which is interpreted as due to a density inhomogeneity generated by the potential modulations.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼