RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The Stressed Gut: Region-specific Immune and Neuroplasticity Changes in Response to Chronic Psychosocial Stress

        Beatriz Lobo,Mónica Tramullas,Beate-C Finger,Kevin W Lomasney,Caroll Beltran,Gerard Clarke,Javier Santos,Niall P Hyland,Timothy G Dinan,John F Cryan 대한소화기 기능성질환∙운동학회 2023 Journal of Neurogastroenterology and Motility (JNM Vol.29 No.1

        Background/AimsChronic psychological stress affects gastrointestinal physiology which may underpin alterations in the immune response and epithelial transport, both functions are partly regulated by enteric nervous system. However, its effects on enteric neuroplasticity are still unclear. This study aims to investigate the effects of chronic unpredictable psychological stress on intestinal motility and prominent markers of enteric function. MethodsAdult male C57BL/6J mice were exposed to 19 day of unpredictable stress protocol schedule of social defeat and overcrowding. We investigated the effects on plasma corticosterone, food intake, and body weight. In vivo gastrointestinal motility was assessed by fecal pellet output and by whole-gastrointestinal transit (using the carmine red method). Tissue monoamine level, neural and glial markers, neurotrophic factors, monoamine signaling, and Toll-like receptor expression in the proximal and distal colon, and terminal ileum were also assessed. ResultsFollowing chronic unpredictable psychological stress, stressed mice showed increased food intake and body weight gain (P < 0.001), and reduced corticosterone levels (P < 0.05) compared to control mice. Stressed mice had reduced stool output without differences in water content, and showed a delayed gastrointestinal transit compared to control mice (P < 0.05). Stressed mice exhibited decreased mRNA expression of tyrosine hydroxylase (Th), brain-derived neurotrophic factor (Bdnf) and glial cell-derived neurotrophic factor (Gdnf), as well as Toll-like receptor 2 (Tlr2) compared to control (P < 0.05), only proximal colon. These molecular changes in proximal colon were associated with higher levels of monoamines in tissue. ConclusionUnpredictable psychological chronic stress induces region-specific impairment in monoamine levels and neuroplasticity markers that may relate to delayed intestinal transit.

      • KCI등재

        A Marine-Derived, Multi-Mineral Supplement Influences Bacterial Fermentation and Short Chain Fatty Acid Profile In Vitro

        Valeria D. Felice,Denise M. O’Gorman,J. Apajalahti,T. Rinttila,Nora M. O’Brien,Niall P. Hyland 한국식품영양과학회 2021 Journal of medicinal food Vol.24 No.5

        Aquamin is a calcium-rich multi-mineral supplement derived from the red marine algae, Lithothamnion species. Calcium supplementation has been shown to exert a prebiotic-like effect on the gut microbiota and has been associated with distinct changes in lactate and short chain fatty acid (SCFA) production. Irritable bowel syndrome (IBS) subtype is associated with changes in SCFA levels compared with healthy controls. Using an ex vivo simulation model, and a fecal inoculum from a patient diagnosed with IBS, we evaluated the effects of Aquamin (at 6 and 30 mg/mL) on SCFAs and lactate production, pH and gas production, and human microbiota composition. Our results demonstrate that Aquamin increased SCFA production (acetate and propionate by 8% and 24%, respectively, at 30 mg/mL dose), significantly decreased lactate production (30 mg/mL), and increased colonic fluid pH without inducing changes in colonic gas production or gastrointestinal (GI) microbiota composition. These results indicate that Aquamin may play a role in optimizing GI microbial function in an ex vivo setting.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼