RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Current Progress in Tendon and Ligament Tissue Engineering

        Wei Lee Lim,Ling Ling Liau,Min Hwei Ng,Shiplu Roy Chowdhury,Jia Xian Law 한국조직공학과 재생의학회 2019 조직공학과 재생의학 Vol.16 No.6

        BACKGROUND: Tendon and ligament injuries accounted for 30% of all musculoskeletal consultations with 4 million new incidences worldwide each year and thus imposed a significant burden to the society and the economy. Damaged tendon and ligament can severely affect the normal body movement and might lead to many complications if not treated promptly and adequately. Current conventional treatment through surgical repair and tissue graft are ineffective with a high rate of recurrence. METHODS: In this review, we first discussed the anatomy, physiology and pathophysiology of tendon and ligament injuries and its current treatment. Secondly, we explored the current role of tendon and ligament tissue engineering, describing its recent advances. After that, we also described stem cell and cell secreted product approaches in tendon and ligament injuries. Lastly, we examined the role of the bioreactor and mechanical loading in in vitro maturation of engineered tendon and ligament. RESULTS: Tissue engineering offers various alternative ways of treatment from biological tissue constructs to stem cell therapy and cell secreted products. Bioreactor with mechanical stimulation is instrumental in preparing mature engineered tendon and ligament substitutes in vitro. CONCLUSIONS: Tissue engineering showed great promise in replacing the damaged tendon and ligament. However, more study is needed to develop ideal engineered tendon and ligament.

      • KCI등재

        Human Dental Pulp Stem Cells (DPSCs) Therapy in Rescuing Photoreceptors and Establishing a Sodium Iodate-Induced Retinal Degeneration Rat Model

        Lam Chenshen,Alsaeedi Hiba Amer,Koh Avin Ee-Hwan,Harun Mohd Hairul Nizam,Hwei Angela Ng Min,Mok Pooi Ling,Luu Chi D,Yong Then Kong,Subbiah Suresh Kumar,Bastion Mae-Lynn Catherine 한국조직공학과 재생의학회 2021 조직공학과 재생의학 Vol.18 No.1

        BACKGROUND: Different methods have been used to inject stem cells into the eye for research. We previously explored the intravitreal route. Here, we investigate the efficacy of intravenous and subretinal-transplanted human dental pulp stem cells (DPSCs) in rescuing the photoreceptors of a sodium iodate-induced retinal degeneration model. Methods: Three groups of Sprague Dawley rats were used: intervention, vehicle group and negative control groups (n = 6 in each). Intravenous injection of 60 mg/kg sodium iodate (day 0) induced retinal degeneration. On day 4 post-injection of sodium iodate, the rats in the intervention group received intravenous DPSC and subretinal DPSC in the right eye; rats in the vehicle group received subretinal Hank’s balance salt solution and intravenous normal saline; while negative control group received nothing. Electroretinogram (ERG) was performed to assess the retinal function at day 0 (baseline), day 4, day 11, day 18, day 26, and day 32. By the end of the study at day 32, the rats were euthanized, and both their enucleated eyes were sent for histology. Results: No significant difference in maximal ERG a-wave (p = 0.107) and b-wave, (p = 0.153) amplitude was seen amongst the experimental groups. However, photopic 30 Hz flicker amplitude of the study eye showed significant differences in the 3 groups (p = 0.032). Within the intervention group, there was an improvement in 30 Hz flicker ERG response of all 6 treated right eyes, which was injected with subretinal DPSC; while the 30 Hz flicker ERG of the non-treated left eyes remained flat. Histology showed improved outer nuclear layer thickness in intervention group; however, findings were not significant compared to the negative and vehicle groups. Conclusion: Combination of subretinal and intravenous injection of DPSCs may have potential to rescue cone function from a NaIO3-induced retinal injury model. BACKGROUND: Different methods have been used to inject stem cells into the eye for research. We previously explored the intravitreal route. Here, we investigate the efficacy of intravenous and subretinal-transplanted human dental pulp stem cells (DPSCs) in rescuing the photoreceptors of a sodium iodate-induced retinal degeneration model. Methods: Three groups of Sprague Dawley rats were used: intervention, vehicle group and negative control groups (n = 6 in each). Intravenous injection of 60 mg/kg sodium iodate (day 0) induced retinal degeneration. On day 4 post-injection of sodium iodate, the rats in the intervention group received intravenous DPSC and subretinal DPSC in the right eye; rats in the vehicle group received subretinal Hank’s balance salt solution and intravenous normal saline; while negative control group received nothing. Electroretinogram (ERG) was performed to assess the retinal function at day 0 (baseline), day 4, day 11, day 18, day 26, and day 32. By the end of the study at day 32, the rats were euthanized, and both their enucleated eyes were sent for histology. Results: No significant difference in maximal ERG a-wave (p = 0.107) and b-wave, (p = 0.153) amplitude was seen amongst the experimental groups. However, photopic 30 Hz flicker amplitude of the study eye showed significant differences in the 3 groups (p = 0.032). Within the intervention group, there was an improvement in 30 Hz flicker ERG response of all 6 treated right eyes, which was injected with subretinal DPSC; while the 30 Hz flicker ERG of the non-treated left eyes remained flat. Histology showed improved outer nuclear layer thickness in intervention group; however, findings were not significant compared to the negative and vehicle groups. Conclusion: Combination of subretinal and intravenous injection of DPSCs may have potential to rescue cone function from a NaIO3-induced retinal injury model.

      • KCI등재

        Tissue-Engineered Hydroxyapatite Bone Scaffold Impregnated with Osteoprogenitor Cells Promotes Bone Regeneration in Sheep Model

        Bajuri Mohd Yazid,Selvanathan Nanchappan,Dzeidee Schaff Fatin Nadira,Abdul Suki Muhammad Haziq,Ng Angela Min Hwei 한국조직공학과 재생의학회 2021 조직공학과 재생의학 Vol.18 No.3

        BACKGROUND: Managing massive bone defects, a great challenge to orthopaedics reconstructive surgery. The problem arise is the supply of suitable bone is limited with many complications. Tissue-engineered hydroxyapatite bone (TEHB) scaffold impregnated with osteoprogenitor cells developed as an alternative to promote bone regeneration. METHODS: This animal protocol has been approved by Universiti Kebangsaan Malaysia Animal Ethical Committee. The TEHB scaffold prepared from hydroxyapatite using gel casting method. A total of six adolescent female sheep were chosen for this study. Later, all the sheep were euthanized in a proper manner and the bone harvested for biomechanical study. Bone marrow was collected from iliac crest of the sheep and bone marrow stem cells (BMSCs) isolated and cultured. BMSCs then cultured in osteogenic medium for osteoprogenitor cells development and the plasma collected was seeded with osteoprogenitor cells mixed with calcium chloride. Bone defect of 3 cm length of tibia bone created from each sheep leg and implanted with autologous and TEHB scaffold in 2 different groups of sheep. Wound site was monitored weekly until the wound completely healed and conventional X-ray performed at week 1 and 24. Shear test was conducted to determine the shear force on the autologous bone and TEHB scaffold after implantation for 24 weeks. RESULTS: All of the sheep survived without any complications during the study period and radiograph showed new bone formation. Later, the bone harvested was for biomechanical study. The highest shear force for the autologous group was 13 MPa and the lowest was 5 MPa while for the scaffold group, the highest was 10 MPa and the lowest was 3 MPa. Although, proximal and distal interface of autologous bone graft shows higher shear strength compared to the TEHB scaffold but there is no significant difference in both groups, p value > 0.05. Histologically in both proximal and distal interface in both arms shows bone healing and woven bone formation. CONCLUSION: TEHB scaffold impregnated with osteoprogenitor cells has the potential to be developed as a bone substitute in view of its strength and capability to promote bone regeneration. BACKGROUND: Managing massive bone defects, a great challenge to orthopaedics reconstructive surgery. The problem arise is the supply of suitable bone is limited with many complications. Tissue-engineered hydroxyapatite bone (TEHB) scaffold impregnated with osteoprogenitor cells developed as an alternative to promote bone regeneration. METHODS: This animal protocol has been approved by Universiti Kebangsaan Malaysia Animal Ethical Committee. The TEHB scaffold prepared from hydroxyapatite using gel casting method. A total of six adolescent female sheep were chosen for this study. Later, all the sheep were euthanized in a proper manner and the bone harvested for biomechanical study. Bone marrow was collected from iliac crest of the sheep and bone marrow stem cells (BMSCs) isolated and cultured. BMSCs then cultured in osteogenic medium for osteoprogenitor cells development and the plasma collected was seeded with osteoprogenitor cells mixed with calcium chloride. Bone defect of 3 cm length of tibia bone created from each sheep leg and implanted with autologous and TEHB scaffold in 2 different groups of sheep. Wound site was monitored weekly until the wound completely healed and conventional X-ray performed at week 1 and 24. Shear test was conducted to determine the shear force on the autologous bone and TEHB scaffold after implantation for 24 weeks. RESULTS: All of the sheep survived without any complications during the study period and radiograph showed new bone formation. Later, the bone harvested was for biomechanical study. The highest shear force for the autologous group was 13 MPa and the lowest was 5 MPa while for the scaffold group, the highest was 10 MPa and the lowest was 3 MPa. Although, proximal and distal interface of autologous bone graft shows higher shear strength compared to the TEHB scaffold but there is no significant difference in both groups, p value > 0.05. Histologically in both proximal and distal interface in both arms shows bone healing and woven bone formation. CONCLUSION: TEHB scaffold impregnated with osteoprogenitor cells has the potential to be developed as a bone substitute in view of its strength and capability to promote bone regeneration.

      • KCI등재

        Mesenchymal Stromal Cells from the Maternal Segment of Human Umbilical Cord is Ideal for Bone Regeneration in Allogenic Setting

        Jezamine Lim,Zainul Rashid Mohamad Razi,Jia Xian Law,Azmawati Mohammed Nawi,Ruszymah Binti Haji Idrus,Tan Geok Chin,Muaatamarulain Mustangin,Min Hwei Ng 한국조직공학과 재생의학회 2018 조직공학과 재생의학 Vol.15 No.1

        Umbilical cord (UC) is a discarded product from the operating theatre and a ready source of mesenchymal stromal cells (MSCs). MSCs from UC express both embryonic and adult mesenchymal stem cell markers and are known to be hypoimmunogenic and non-tumorigenic and thus suitable for allogeneic cell transplantation. Our study aimed to determine the degree of immunotolerance and bone-forming capacity of osteodifferentiated human Wharton’s jelly-derived mesenchymal stromal cells (hWJ-MSCs) from different segments of UC in an allogenic setting. UCs were obtained from healthy donors delivering a full-term infant by elective Caesarean section. hWJ-MSCs were isolated from 3 cm length segment from the maternal and foetal ends of UCs. Three-dimensional fibrin constructs were formed and implanted intramuscularly into immunocompetent mice. The mice were implanted with 1) fibrin construct with maternal hWJ-MSCs, 2) fibrin construct with foetal hWJ-MSCs, or 3) fibrin without cells; the control group received sham surgery. After 1 month, the lymphoid organs were analysed to determine the degree of immune rejection and bone constructs were analysed to determine the amount of bone formed. A pronounced immune reaction was noted in the fibrin group. The maternal segment constructs demonstrated greater osteogenesis than the foetal segment constructs. Both maternal and foetal segment constructs caused minimal immune reaction and thus appear to be safe for allogeneic bone transplant. The suppression of inflammation may be a result of increased anti-inflammatory cytokine production mediated by the hWJMSC. In summary, this study demonstrates the feasibility of using bone constructs derived from hWJ-MSCs in an allogenic setting.

      • KCI등재

        Incorporation of Smooth Muscle Cells Derived from Human Adipose Stem Cells on Poly(Lactic-co-Glycolic Acid) Scaffold for the Reconstruction of Subtotally Resected Urinary Bladder in Athymic Rats

        Salem Salah Abood,Rashidbenam Zahra,Jasman Mohd Hafidzul,Ho Christopher Chee Kong,Sagap Ismail,Singh Rajesh,Yusof Mohd Reusmaazran,Md. Zainuddin Zulkifli,Haji Idrus Ruszymah Bt,Ng Min Hwei 한국조직공학과 재생의학회 2020 조직공학과 재생의학 Vol.17 No.4

        Background: The urinary tract can be affected by both congenital abnormalities as well as acquired disorders, such as cancer, trauma, infection, inflammation, and iatrogenic injuries, all of which may lead to organ damage requiring eventual reconstruction. As a gold standard, gastrointestinal segment is used for urinary bladder reconstruction. However, one major problem is that while bladder tissue prevents reabsorption of specific solutes, gastrointestinal tissue actually absorbs them. Therefore, tissue engineering approach had been attempted to provide an alternative tissue graft for urinary bladder reconstruction. Methods: Human adipose-derived stem cells isolated from fat tissues were differentiated into smooth muscle cells and then seeded onto a triple-layered PLGA sheet to form a bladder construct. Adult athymic rats underwent subtotal urinary bladder resection and were divided into three treatment groups (n = 3): Group 1 (“sham”) underwent anastomosis of the remaining basal region, Group 2 underwent reconstruction with the cell-free scaffold, and Group 3 underwent reconstruction with the tissue-engineered bladder construct. Animals were monitored on a daily basis and euthanisation was performed whenever a decline in animal health was detected. Results: All animals in Groups 1, 2 and 3 survived for at least 7 days and were followed up to a maximum of 12 weeks post-operation. It was found that by Day 14, substantial ingrowth of smooth muscle and urothelial cells had occurred in Group 2 and 3. In the long-term follow up of group 3 (tissue-engineered bladder construct group), it was found that the urinary bladder wall was completely regenerated and bladder function was fully restored. Urodynamic and radiological evaluations of the reconstructed bladder showed a return to normal bladder volume and function.Histological analysis revealed the presence of three muscular layers and a urothelium similar to that of a normal bladder. Immunohistochemical staining using human-specific myocyte markers (myosin heavy chain and smoothelin) confirmed the incorporation of the seeded cells in the newly regenerated muscular layers. Conclusion: Implantation of PLGA construct seeded with smooth muscle cells derived from human adipose stem cells can lead to regeneration of the muscular layers and urothelial ingrowth, leading to formation of a completely functional urinary bladder.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼