RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Coupled diffusion of multi-component chemicals in nonsaturated concrete

        Nattapong Damrongwiriyanupap,Linyuan Li,Yunping Xi 사단법인 한국계산역학회 2013 Computers and Concrete, An International Journal Vol.11 No.3

        A comprehensive simulation model for the transport process of fully coupled moisture and multispecies in non-saturated concrete structures is proposed. The governing equations of moisture and ion diffusion are formulated based on Fick’s law and the Nernst-Planck equation, respectively. The governing equations are modified by explicitly including the coupling terms corresponding to the coupled mechanisms. The ionic interaction-induced electrostatic potential is described by electroneutrality condition. The model takes into account the two-way coupled effect of moisture diffusion and ion transport in concrete. The coupling parameters are evaluated based on the available experimental data and incorporated in the governing equations. Differing from previous researches, the material parameters related to moisture diffusion and ion transport in concrete are considered not to be constant numbers and characterized by the material models that account for the concrete mix design parameters and age of concrete. Then, the material models are included in the numerical analysis and the governing equations are solved by using finite element method. The numerical results obtained from the present model agree very well with available test data. Thus, the model can predict satisfactorily the ingress of deicing salts into non-saturated concrete.

      • KCI등재

        Temperature effect on multi-ionic species diffusion in saturated concrete

        Nattapong Damrongwiriyanupap,Linyuan Li,Suchart Limkatanyu,Yunping Xi 사단법인 한국계산역학회 2014 Computers and Concrete, An International Journal Vol.13 No.2

        This study presents the mathematical model for predicting chloride penetration into saturated concrete under non-isothermal condition. The model considers not only diffusion mechanism but also migration process of chloride ions and other chemical species in concrete pore solution such as sodium, potassium, and hydroxyl ions. The coupled multi-ionic transport in concrete is described by the Nernst-Planck equation associated with electro-neutrality condition. The coupling parameter taken into account the effect of temperature on ion diffusion obtained from available test data is proposed and explicitly incorporated in the governing equations. The coupled transport equations are solved using the finite element method. The numerical results are validated with available experimental data and the comparison shows a good agreement.

      • KCI등재

        Effect of Sodium Hydroxide and Sodium Silicate Solutions on Strengths of Alkali Activated High Calcium Fly Ash Containing Portland Cement

        Tanakorn Phoo-ngernkham,Sakonwan Hanjitsuwan,Nattapong Damrongwiriyanupap,Prinya Chindaprasirt 대한토목학회 2017 KSCE Journal of Civil Engineering Vol.21 No.6

        In this paper, the mechanical performance of fly ash and Portland cement geopolymer activated with sodium hydroxide and sodium silicate solutions was studied. The Geopolymer Mortars (GM) were made from high calcium Fly Ash (FA) and ordinary Portland Cement (PC) with FA:PC weight ratios of 100:0, 95:5, 90:10, 85:15, and 80:20. The GMs were activated with three combinations of sodium Hydroxide Solution (SH) and sodium Silicate Solution (SS) viz., SH, SH+SS (SH:SS=2) and SS. For all mixes, 10 molar SH, alkali activator liquid/solid binder ratio of 0.60 and curing at ambient temperature of 25oC were used. The result indicated that the compressive and shear bond strengths of GM depended on the alkali activators used and the amount of PC. The use of SH and SHSS resulted in the formation of additional Calcium Silicate Hydrate (CSH) which coexisted with sodium aluminosilicate hydrate (NASH) gel. Whereas, the use of SS resulted in NASH gel with only a small amount of CSH. The increasing of PC content enhanced the compressive and shear bond strengths of GMs due to the formation of additional CSH. The 15% PC mixed with SHSS gave the optimum compressive and shear bond strengths.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼