RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Onion Peel Extract Inhibits Cancer Cell Growth and Progression through the Roles of L1CAM, NF-κB, and Angiogenesis in HT-29 Colorectal Cancer Cells

        Tamonwan Uttarawichien,Wilunplus Khumsri,Prasit Suwannalert,Nathawut Sibmooh,Witchuda Payuhakrit 한국식품영양과학회 2021 Preventive Nutrition and Food Science Vol.26 No.3

        Colorectal cancer (CRC) is an aggressive malignancy. Critical mechanisms that support CRC progression include cell migration, invasion, metastasis, and angiogenesis, which is associated with L1 cell adhesion molecule (L1CAM) and nuclear factor-kappa B (NF-κB) signaling pathways. In this study, viability of HT-29 cells and human umbilical vein endothelial cells (HUVECs) was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, and cell apoptosis was investigated by flow cytometry assays. HT-29 cell migration and invasion were observed by wound healing and Transwell invasion assays, respectively, and tube formation of HUVECs was observed by tubulogenesis assays. L1CAM and NF-κB protein expressions in HT-29 cells treated with onion peel extract were determined by indirect immunofluorescence. Results showed that high dose treatments of onion peel extract inhibited cell viability of both HT-29 cells and HUVECs, induced HT-29 cell apoptosis, and inhibited HT-29 cell migration and invasion. Moreover, onion peel extract decreased total HUVEC tube length and, at a concentration of 10 μg/mL, showed potential to downregulate L1CAM and NF-κB. In conclusion, onion peel extract inhibits HT-29 cell growth, migration, and invasion through suppressing pathways related to angiogenesis downstream of L1CAM-activated NF-κB.

      • KCI등재

        Hydroxychavicol Inhibits In Vitro Osteoclastogenesis via the Suppression of NF-κB Signaling Pathway

        Srihirun Sirada,Mathithiphark Satarat,Phruksaniyom Chareerut,Kongphanich Pitchanun,Inthanop Wisutthaporn,Sriwantana Thanaporn,Tancharoen Salunya,Sibmooh Nathawut,Vivithanaporn Pornpun 한국응용약물학회 2024 Biomolecules & Therapeutics(구 응용약물학회지) Vol.32 No.2

        Hydroxychavicol, a primary active phenolic compound of betel leaves, previously inhibited bone loss in vivo by stimulating osteogenesis. However, the effect of hydroxychavicol on bone remodeling induced by osteoclasts is unknown. In this study, the anti-osteoclastogenic effects of hydroxychavicol and its mechanism were investigated in receptor activator of nuclear factor kappa- B ligand (RANKL)-induced osteoclasts. Hydroxychavicol reduced the number of tartrate resistance acid phosphatase (TRAP)- positive multinucleated, F-actin ring formation and bone-resorbing activity of osteoclasts differentiated from RAW264.7 cells in a concentration-dependent manner. Furthermore, hydroxychavicol decreased the expression of osteoclast-specific genes, including cathepsin K, MMP-9, and dendritic cell-specific transmembrane protein (DC-STAMP). For mechanistic studies, hydroxychavicol suppressed RANKL-induced expression of major transcription factors, including the nuclear factor of activated T-cells 1 (NFATc1), c-Fos, and c-Jun. At the early stage of osteoclast differentiation, hydroxychavicol blocked the phosphorylation of NF-κB subunits (p65 and Iκβα). This blockade led to the decrease of nuclear translocation of p65 induced by RANKL. In addition, the anti-osteoclastogenic effect of hydroxychavicol was confirmed by the inhibition of TRAP-positive multinucleated differentiation from human peripheral mononuclear cells (PBMCs). In conclusion, hydroxychavicol inhibits osteoclastogenesis by abrogating RANKL-induced NFATc1 expression by suppressing the NF-κB signaling pathway in vitro.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼