RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effect of Freeze-Thaw Cycles on Triaxial Strength Properties of Fiber-Reinforced Clayey Soil

        Muge Elif Orakoglu,Jiankun Liu 대한토목학회 2017 KSCE JOURNAL OF CIVIL ENGINEERING Vol.21 No.6

        Understanding effect of freezing phenomenon in a fiber-reinforced soil structure is essential to foundation technology, road construction and earthwork application in cold region. This research aims to present the results of experimental investigation relative to the unconsolidated-undrained triaxial compression behavior of fine-grained soil as a function of freeze-thaw cycles and fiber volume fractions. All measurements were carried out for 3 selected glass and basalt fiber fractions (0%, 0.5%, and 1%) and 5 selected freeze-thaw cycles (0, 2, 5, 10, and 15). It has been observed that for the studied soil, strength of unreinforced soil reduced with increasing number of the freeze-thaw cycles while fiber-reinforced soil shows greater effect and the strength reduction amount reduces from 40% to 18%. Moreover, the reduction trend for cohesion of the fiber-reinforced soil decreased, this was seen more prevalent on 1% glass fiber-reinforced soil. The resilient modulus of all specimens reduced with increasing number of the freezethaw cycles. The experimental results demonstrated that different fiber fractions and their mixtures could be employed as supplement additive to improve the freeze-thaw performance of cohesive soils for road construction and earthworks.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼