RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Design and analysis of a novel parallel mechanism for prosthetic knee wear test simulators

        Fatemeh S. Daeinejad,Farzam Farahmand,Mohammad Durali,Mohammad H. Abedinnasab 대한기계학회 2017 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.31 No.2

        Using a parallel mechanism in the wear test simulators of prosthetic knees provides an easy access to the femoral and tibial components during tests. Moreover, because of its higher accuracy and load capacity, in comparison with serial mechanisms, it allows simulation of heavier tasks, such as climbing stairs, to be performed. This paper describes a new 3 Degree of freedom (DoF) spatial 2T1R (T:Translational DoF; R: Rotational DoF) parallel mechanism, for reproducing the force and motion of the tibial component of the knee prostheses in a wear test simulator. Kinematics and dynamics analysis of the mechanism indicated that it can satisfy the required DoFs, workspace and load capacity prescribed in the standard. Also, evaluation of the performance of the mechanism using the simMechanics toolbox of MATLAB revealed that it can reproduce the prescribed forces/torques with relatively high accuracy. However, the mechanism’s force outcomes were found to be affected by inaccuracies in mounting the prosthesis components, although less than the previous serial simulators. In comparison of the different possible architectures, a lateral leg angulation of 45 degrees provided the best efficacy, considering the size of actuators, the overall size of the mechanism and the accessibility of the test sample.

      • KCI등재

        Kinematics of the 4-RUU parallel manipulator generator of the Schönflies motion by means of screw theory

        Jaime Gallardo-Alvarado,Mario A. García-Murillo,Md. Nazrul Islam,Mohammad H. Abedinnasab 대한기계학회 2017 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.31 No.10

        This work deals with the inverse–forward kinematic analysis of a symmetric parallel manipulator equipped with a rotary actuator generator of three independent translations and one rotation motion. The closure equations of the displacement analysis are easily formulated based on the unknown coordinates of two points embedded in the moving platform. The input–output equations of velocity and acceleration of the robot are systematically obtained through the reciprocal-screw theory. The pseudo-kinematic pairs that connect the limbs to the fixed platform and a passive kinematic chain connected to the robot manipulator eliminate the handling of rank-deficient Jacobian matrices, which is an undisputable advantage from the computational point of view. Furthermore, this strategy allows the use of the Lie algebra se(3) without the inherent restrictions associated with the limited mobility of the robot.

      • KCI등재

        A simple approach to solving the kinematics of the 4-UPS/PS (3R1T) parallel manipulator

        Jaime Gallardo-Alvarado,Mario A. García-Murillo,Md. Nazrul Islam,Mohammad H. Abedinnasab 대한기계학회 2016 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.30 No.5

        This work reports on the position, velocity and acceleration analyses of a four-degrees-of-freedom parallel manipulator, 4-DoF-PM for brevity, which generates Three-rotation-one-translation (3R1T) motion. Nearly closed-form solutions to solve the forward displacement analysis are easily obtained based on closure equations formulated upon linear combinations of the coordinates of three non-collinear points embedded in the moving platform. Then, the input-output equations of velocity and acceleration of the robot manipulator are systematically established by resorting to the theory of screws. To this end, the Klein form of the Lie algebra se(3) of the Euclidean group SE(3) is systematically applied to the velocity and reduced acceleration state in screw form of the moving platform cancelling the passive joint rates of the parallel manipulator. Numerical examples, which are confirmed by means of commercially available software, are provided to show the application of the method.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼