RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        MiR-339 attenuates LPS-induced intestinal epithelial cells inflammatory responses and apoptosis by targeting TLR4

        Meiying Xie,Lina Zhang,Luoye Li,Minhuan Fan,Lianjie Hou 한국유전학회 2020 Genes & Genomics Vol.42 No.9

        Background Intestinal epithelial cells are important for defending against pathogen infection. LPS is an endotoxin that is highly antigenic and cytotoxic produced by bacteria. LPS disrupts the intestine epithelium integrity and induced the intestinal epithelial cell infammation and apoptosis. Our previous study has predicted the function of exosome miRNAs through bioinformatics analysis, and we found that miR-339 had a potential function in cell infammation response. To our knowledge, no published paper has demonstrated the miR-339 function in protecting the intestine epithelium against bacterial infection. Objective The objective of this study is to evaluate the miR-339 function in regulating intestinal epithelial cells to defend against bacterial infection through biological experiments and bioinformatics analyses. Methods Through the miR-339 transfection experiment and TLR4 interfering experiment, we evaluated the function of miR339 and TLR4 in the process of infammatory responses and apoptosis. Through Bioinformatics analyses and dual-luciferase reporter experiment, we identifed the target gene of miR-339. Results miR-339 attenuates LPS-induced intestinal epithelial cells infammatory responses through the TLR4/NF-κB signaling pathway and inhibited LPS-induced apoptosis through the P53 signaling pathway. TLR4 is the target gene of miR-339. TLR4 reduced LPS-induced proinfammatory responses and apoptosis. Conclusions In conclusion, miR-339 protected the intestine epithelial cells from LPS-induced cell infammation and apoptosis through targeting TLR4. This study expanded our understanding of how miRNAs and genes work collaboratively in regulating intestinal epithelial cells to defend against bacterial infection.

      • KCI등재

        Highly elastic aerogel derived from spent coffee grounds as oil removal adsorbent

        Yongli Chen,Weijie Cai,Meng Zhang,Meiying Xie,Fengzhi Tan,Fan Yang 한국화학공학회 2022 Korean Journal of Chemical Engineering Vol.39 No.6

        In the face of increasing environmental pollution, aerogels have emerged as valuable materials for potentialoil/water separation. However, many of the currently developed aerogels have unsatisfactory compressibility, high costand a single hydrophobic modification method, which limits larger-scale application. In this work, a type of aerogelwith compressible, inexpensive, and fully biodegradable features was designed via a novel zirconium chloride modificationstrategy. Typically, a series of aerogels (HCSW-1, HCSW-2, and HCSW-3) were readily prepared from a mixture ofspent coffee grounds, waste paper and sodium alginate. The prepared aerogels exhibited good elasticity, low density(0.024 g cm3), high porosity (98.3%), efficient oil/water separation and good oil uptake (23-44 times of its weight). Inaddition, the as-prepared aerogels can be easily recycled several times, thus meeting the demand of actual oil/waterseparation. Such prominent results provide a new perspective for the development of efficient hydrophobic aerogels inthe treatment of offshore oil spills and industrial wastewater.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼