RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Identification of Different Species and Dultivars of Brassica by SDS-PAGE, Isozyme and Molecular Marker

        Mukhlesur Rahman Md.,Hirata Yutaka The Korean Society of Plant Biotechnology 2005 Plant molecular biology and biotechnology research Vol.7 No.1

        Eighty-five different cultivars of Brassica rapa, B. juncea, B. nap us, B. carinata, B. oleracea and hexaploid Brassica collected from Bangladesh, Japan, China and Denmark were analyzed by SDS-PAGE for seed and leaf protein variations, using esterase, acid phosphatase and peroxidase isozyme analysis. Ten polymorphic bands were identified from seed protein however no identifiable polymorphic band was found in the leaf protein. Polymorphic markers clearly distinguished the different Brassica species as well as yellow sarson (YS) and brown seeded (BS) cultivars of B. rapa. The $F_1$ cross between YS and brown seeded cultivars showed the existance of all poly-morphic bands of the respective parents. The Bangla-deshi and Japanese cultivars of B. rapa differed in the amount of seed protein. In the case of isozyme analysis, esterase showed the highest number of polymorphic bands (13) followed by acid phosphatase (9) and peroxidase (5). These polymorphic markers were very effec-tive for classification of all the species studied in this experiment. In parentage tests using isozymes, the hybridity of intra-and-interspecific crosses of almost all the seedlings could be identified from their respective cross combinations. Esterase polymorphism showed a clear differentiation between YS and BS types of B. rapa. In addition, two esterase polymorphic markers were iden ified to differentiate some cultivars of B. juncea. Segregation patterns in these two esterase bands showed a simple Mendelian monohybrid ratio of 3:1 in $F_2$, 1:1 in test cross and 1:0 in back cross progenies. No polymorphic band was identified to distinguish different cultivars of the same species by acid phosphatase or peroxidase. Polymerase Chain Reaction (PCR) was carried out with seed coat color specific marker of B. juncea. The yellow seeded cultivars produced a strong band at 0.5 kb and weak band 1.2 kb. In the addition of these two specific bands, Japanese yellow-seeded cultivars expressed two more weak bands at 1.0 kb and 1.1 kb. Where the brown seeded cultivars generated a single strong band at 1.1 kb. In segregating population, the yellow seed coat color marker segregated at a ratio 15 (brown) : 1 (yellow), indicating the digenic inheritance pattern of the trait.

      • KCI우수등재

        Effect of supplementary feeding on the production traits, carcass and meat quality of Jamuna basin lambs

        Md. Anwar Hossain,Md. Mukhlesur Rahman,Md. Wakilur Rahman,Md. Mujaffar Hossain,Md. Abul Hashem 한국축산학회 2023 한국축산학회지 Vol.65 No.1

        This study aimed to identify the optimum level of supplementary feeds on the carcass traits and meat quality of Jamuna basin lambs. Forty selected lambs were divided into four treatments such as T0 (no concentrate supplementation), T1 (1% concentrate feed), T2 (1.5% concentrate feed) and T3 (2% concentrate feed) having ten lambs per treatment. The data were analyzed through Completely Randomized Design (CRD) with SAS software. Hot carcass, dressing percentage, head, leg, neck, loin, heart, and spleen weight were showed significantly (p < 0.05) higher values with increasing concentrate feed. The crude protein (CP), ether extract (EE) and ash values were significantly increased (p < 0.001) except T2 treatment. The ultimate pH was significantly increased except T2 and cooked pH was significantly decreased (p < 0.001) except T3 treatment. Drip loss and cooking loss (CL) % had significantly reduced (p < 0.001) except T3 treatment. The water holding capacity (WHC) % was significantly increased (p < 0.001) except T3 treatment. The score of color, juiciness and tenderness were significantly different (p < 0.001). Flavor and overall acceptability score were significantly increased (p < 0.05) in different treatments. The color values L* and b* had significantly changed (p < 0.001) and a* value was found significantly higher (p < 0.05) in all treatments. Hence, 12 months of aged lambs with 1.5% concentrate feed showed better performances on carcass, nutritional, physicochemical, sensory and instrumental color values to increase the carcass and the meat quality of lambs.

      • SCISCIESCOPUS

        Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review

        Qambrani, Naveed Ahmed,Rahman, Md. Mukhlesur,Won, Seunggun,Shim, Soomin,Ra, Changsix PERGAMON 2017 RENEWABLE AND SUSTAINABLE ENERGY REVIEWS Vol.79 No.-

        <P><B>Abstract</B></P> <P>Pyrolysis is one of the most promising technologies for the conversion of biomass into high-value products such as bio-oil, syngas, and biochar in the absence of oxygen. High yield biochar can be produced through torrefaction or slow pyrolysis. The efficiency of biochar production from biomass is highly dependent on the pyrolysis temperature, heating rate, type and composition of feedstock, particle size, and reactor conditions. Application of biochar to agriculture may have a significant effect on reducing global warming through the reduction of greenhouse gas (GHG) emissions and the sequestering of atmospheric carbon into soil. At the same time, biochar can help improve soil health and fertility, and enhance agricultural production. Livestock manure, along with waste-feed residues and bedding materials, is a potential source of biochar. This waste emits significant amounts of GHGs adding to global warming and threatening the environment in other ways. The environmental challenges caused by agricultural and animal-waste disposal can be reduced by recycling the waste using pyrolysis, into biochar, energy, and value-added products. Biochar can act as a sorbent for organic and inorganic contaminants and can efficiently remove these materials from affected waters. Contaminant removal is mainly based on the presence of functional groups and charges on the surface of the biochar. Thus, biochar can help to improve food security by contributing to sustainable production systems and maintaining an eco-friendly environment. This review details the principles and concepts involved in biochar production, the factors that affect biochar quality, as well as the applications of biochar.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼