RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Oxygen Concentration Control of Dopamine-Induced High Uniformity Surface Coating Chemistry

        Kim, Hyo Won,McCloskey, Bryan D.,Choi, Tae Hwan,Lee, Changho,Kim, Min-Joung,Freeman, Benny D.,Park, Ho Bum American Chemical Society 2013 ACS APPLIED MATERIALS & INTERFACES Vol.5 No.2

        <P>Material surface engineering has attracted great interest in important applications, including electronics, biomedicine, and membranes. More recently, dopamine has been widely exploited in solution-based chemistry to direct facile surface modification. However, unsolved questions remain about the chemical identity of the final products, their deposition kinetics and their binding mechanism. In particular, the dopamine oxidation reaction kinetics is a key to improving surface modification efficiency. Here, we demonstrate that high O<SUB>2</SUB> concentrations in the dopamine solution lead to highly homogeneous, thin layer deposition on any material surfaces via accelerated reaction kinetics, elucidated by Le Chatelier’s principle toward dopamine oxidation steps in a Michael-addition reaction. As a result, highly uniform, ultra-smooth modified surfaces are achieved in much shorter deposition times. This finding provides new insights into the effect of reaction kinetics and molecular geometry on the uniformity of modifications for surface engineering techniques.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/aamick/2013/aamick.2013.5.issue-2/am302439g/production/images/medium/am-2012-02439g_0003.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/am302439g'>ACS Electronic Supporting Info</A></P>

      • Disulfonated poly(arylene ether sulfone) random copolymer thin film composite membrane fabricated using a benign solvent for reverse osmosis applications

        Lee, C.H.,McCloskey, B.D.,Cook, J.,Lane, O.,Xie, W.,Freeman, B.D.,Lee, Y.M.,McGrath, J.E. Elsevier Scientific Pub. Co 2012 Journal of membrane science Vol.389 No.-

        High performance thin film composite (TFC) membranes for reverse osmosis applications were fabricated by coating solutions of highly chlorine-tolerant disulfonated directly copolymerized poly(arylene ether sulfone) random copolymers (BPS-XX, e.g., BPS-20 and 32) on a commercially available porous polysulfone (e.g., Udel<SUP>(</SUP>R)) support. Solvents used in the formation of the TFCs must dissolve the sulfonated polysulfones used as the skin materials, while not harming the non-sulfonated polysulfone support membrane. For this purpose, environmentally friendly solvents were selected via a systematic screening process using a triangular solubility diagram. However, these benign solvents [e.g., di(ethylene glycol)] generally have high boiling points (>∼190<SUP>o</SUP>C). Thus, they necessitate the use of a special TFC formation process, since solvent evaporation at high temperatures caused pore shrinkage in the polysulfone support membrane and could lead to a catastrophic decrease in membrane water permeance. Support membranes were initially immersed in an IPA/glycerin mixture, after which the IPA was allowed to evaporate, leaving glycerin within the membrane pore structure. After a repeated coating procedure using dilute BPS-XX solutions, the TFC membranes were dried under vacuum at elevated temperatures. During this process, the glycerin reduced pore penetration of BPS-XX and prevented pore collapse during the drying procedures. Finally, water-miscible glycerin was eliminated via water treatment. The newly developed coating method formed ultra-thin and defect-free BPS-XX layers on a micro-porous Udel<SUP>(</SUP>R) support membrane. For example, BPS-32 TFC membranes showed NaCl rejection (∼97%), similar to that of its dense membranes. Furthermore, decreasing the amount of coating solution and, therefore, the BPS-32 coating thickness, resulted in improved pure water flux. The TFC water flux was further improved and was accompanied by small reduction in salt rejection after various TFC membrane treatments (e.g., in situ acidification or IPA treatment).

      • KCI등재

        A methodology to define risk matrices – Application to inland water ways autonomous ships

        Bolbot Victor,Theotokatos Gerasimos,McCloskey James,Vassalos Dracos,Boulougouris Evangelos,Twomey Bernard 대한조선학회 2022 International Journal of Naval Architecture and Oc Vol.14 No.1

        The autonomous ships’ introduction is associated with a number of challenges including the lack of appropriate risk acceptance criteria to support the risk assessment process during the initial design phases. This study aims to develop a rational methodology for selecting appropriate risk matrix ratings, which are required to perform the risk assessment of autonomous and conventional ships at an early design stage. This methodology consists of four phases and employs the individual and societal risk acceptance criteria to determine the risk matrix ratings for the groups of people exposed to risks. During the first and second phase, the required input parameters for the risk matrix ratings based on the individual risk and societal risk are calculated, respectively. During the third phase, the risk matrix ratings are defined using input from the first and second phases. During the fourth phase, the equivalence between the different types of consequences is specified. The methodology is applied for the case study of a crewless inland waterways ship to assess her typical operation within north-European mainland. The results demonstrate that the inclusion of societal risk resulted in more stringent risk matrix ratings compared to the ones employed in previous studies. Moreover, the adequacy of the proposed methodology and its effectiveness to provide risk acceptance criteria aligned with societal and individual risk acceptance criteria as well as its applicability to conventional ships are discussed.

      • Stoichiometric Layered Potassium Transition Metal Oxide for Rechargeable Potassium Batteries

        Kim, Haegyeom,Seo, Dong-Hwa,Urban, Alexander,Lee, Jinhyuk,Kwon, Deok-Hwang,Bo, Shou-Hang,Shi, Tan,Papp, Joseph K.,McCloskey, Bryan D.,Ceder, Gerbrand American Chemical Society 2018 Chemistry of materials Vol.30 No.18

        <P>K-ion batteries are promising alternative energy storage systems for large-scale applications because of the globally abundant K reserves. K-ion batteries benefit from the lower standard redox potential of K/K<SUP>+</SUP> than that of Na/Na<SUP>+</SUP> and even Li/Li<SUP>+</SUP>, which can translate into a higher working voltage. Stable KC<SUB>8</SUB> can also be formed via K intercalation into a graphite anode, which contrasts with the thermodynamically unfavorable Na intercalation into graphite, making graphite a readily available anode for K-ion battery technology. However, to construct practical rocking-chair K-ion batteries, an appropriate cathode material that can accommodate reversible K release and storage is still needed. We show that stoichiometric KCrO<SUB>2</SUB> with a layered O3-type structure can function as a cathode for K-ion batteries and demonstrate a practical rocking-chair K-ion battery. In situ X-ray diffraction and electrochemical titration demonstrate that K<SUB><I>x</I></SUB>CrO<SUB>2</SUB> is stable for a wide K content, allowing for topotactic K extraction and reinsertion. We further explain why stoichiometric KCrO<SUB>2</SUB> is unique in forming the layered structure unlike other stoichiometric K-transition metal oxide compounds, which form nonlayered structures; this fundamental understanding provides insight for the future design of other layered cathodes for K-ion batteries.</P> [FIG OMISSION]</BR>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼