RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Numerical investigation of the high pressure selective catalytic reduction system impact on marine two-stroke diesel engines

        Lu Daoyi,Theotokatos Gerasimos,Zhang Jundong,Tang Yuanyuan,Gan Huibing,Liu Qingjiang,Ren Tiebing 대한조선학회 2021 International Journal of Naval Architecture and Oc Vol.13 No.1

        This study aims to investigate the impact of the High Pressure Selective Catalytic Reduction system (SCRHP) on a large marine two-stroke engine performance parameters by employing thermodynamic modelling. A coupled model of the zero-dimensional type is extended to incorporate the modelling of the SCR-HP components and the Control Bypass Valve (CBV) block. This model is employed to simulate several scenarios representing the engine operation at both healthy and degraded conditions considering the compressor fouling and the SCR reactor clogging. The derived results are analysed to quantify the impact of the SCR-HP on the investigated engine performance. The SCR system pressure drop and the cylinder bypass valve flow cause an increase of the engine Specific Fuel Oil Consumption (SFOC) in the range 0.3e2.77 g/kWh. The thermal inertia of the SCR-HP is mainly attributed to the SCR reactor, which causes a delayed turbocharger response. These effects are more pronounced at low engine loads. This study supports the better understanding of the operating characteristics of marine two-stroke diesel engines equipped with the SCR-HP and quantification of the impact of the components degradation on the engine performance.

      • KCI등재

        A methodology to define risk matrices – Application to inland water ways autonomous ships

        Bolbot Victor,Theotokatos Gerasimos,McCloskey James,Vassalos Dracos,Boulougouris Evangelos,Twomey Bernard 대한조선학회 2022 International Journal of Naval Architecture and Oc Vol.14 No.1

        The autonomous ships’ introduction is associated with a number of challenges including the lack of appropriate risk acceptance criteria to support the risk assessment process during the initial design phases. This study aims to develop a rational methodology for selecting appropriate risk matrix ratings, which are required to perform the risk assessment of autonomous and conventional ships at an early design stage. This methodology consists of four phases and employs the individual and societal risk acceptance criteria to determine the risk matrix ratings for the groups of people exposed to risks. During the first and second phase, the required input parameters for the risk matrix ratings based on the individual risk and societal risk are calculated, respectively. During the third phase, the risk matrix ratings are defined using input from the first and second phases. During the fourth phase, the equivalence between the different types of consequences is specified. The methodology is applied for the case study of a crewless inland waterways ship to assess her typical operation within north-European mainland. The results demonstrate that the inclusion of societal risk resulted in more stringent risk matrix ratings compared to the ones employed in previous studies. Moreover, the adequacy of the proposed methodology and its effectiveness to provide risk acceptance criteria aligned with societal and individual risk acceptance criteria as well as its applicability to conventional ships are discussed.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼