RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재
      • Carcinogenic Role of Tumor Necrosis Factor-α Inducing Protein of Helicobacter pylori in Human Stomach

        Suganuma, Masami,Kuzuhara, Takashi,Yamaguchi, Kensei,Fujiki, Hirota Korean Society for Biochemistry and Molecular Biol 2006 Journal of biochemistry and molecular biology Vol.39 No.1

        Helicobacter pylori is the definitive carcinogen for stomach cancer and is known to induce proinflammatory cytokines, such as tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and interleukin-1(IL-1) in the stomach. Based on our findings that TNF-$\alpha$ is an endogenous tumor promoter, we identified the TNF-$\alpha$ inducing protein (Tip$\alpha$) gene family, and confirmed Tip$\alpha$ and HP-MP1 as new carcinogenic proteins of H. pylori. Tip$\alpha$ protein is unique to H. pylori, and this paper shows the strong tumor promoting activity of Tip$\alpha$ gene family, in cooperation with Ras protein and its mechanisms of action in relation to NF-${\kappa}B$ activation, and discusses the carcinogenic role of Tip$\alpha$ in stomach cancer. Our recent finding showing that penicillin-binding proteins of other bacteria are weak homologues of Tip$\alpha$ is also discussed.

      • KCI등재
      • KCI등재

        Primary Cancer Preventionby Green Tea, and Tertiary Cancer Preventionby the Combination of Green Tea Catechins and Anticancer Compounds

        Hirota Fujiki,Eisaburo Sueoka,Tatsuro Watanabe,Masami Suganuma 대한암예방학회 2015 Journal of cancer prevention Vol.20 No.1

        Green tea is a daily beverage, a non-oxidized non-fermented product containing at least four green tea catechins. Considering our first results when repeated applications of (-)-epigallocatechin gallate (EGCG) prevented tumor promotion in mouse skin, we have continued to look at green tea as a possible cancer preventive agent. 1) The 10-year prospective cohort study by Drs. K. Nakachi and K. Imai revealed that drinking 10 Japanese-size cups (120 mL/cup) of green tea per day delayed cancer onset in humans by 7.3 years among females and by 3.2 years among males. The delay of cancer onset is of course significant evidence of primary cancer prevention in humans. 2) In collaboration with Dr. H. Moriwaki’s group we successfully presented a prototype of tertiary cancer prevention showing that 10 Japanese-size cups of green tea daily, supplemented with tablets of green tea extract (G.T.E), reduced recurrence of colorectal adenomas in polypectomy patients by 51.6% (from 31% to 15%). 3) In 1999, we first reported that the combination of green tea catechins and non-steroidal anti-inflammatory drugs showed synergistic anticancer effects in both in vitro and in vivo experiments, along with elucidation of the mechanism. 4) Further studies by other investigators have revealed that various combinations of EGCG orgreen tea extract and anticancer compounds inhibit tumor volume in xenograft mouse models implanted with various human cancer cell lines. Green tea is a cancer preventive, and green tea catechins act as synergists with anticancer compounds.

      • KCI등재

        Regulations of Reversal of Senescence by PKC Isozymes in Response to 12-O-Tetradecanoylphorbol-13-Acetate via Nuclear Translocation of pErk1/2

        임인경,Yun Yeong Lee,류민숙,Hong Seok Kim,Masami Suganuma,Kye-Yong Song 한국분자세포생물학회 2016 Molecules and cells Vol.39 No.3

        The mechanism by which 12-O-tetradecanoylphorbol-13-acetate (TPA) bypasses cellular senescence was investigated using human diploid fibroblast (HDF) cell replicative senescence as a model. Upon TPA treatment, protein kinase C (PKC)  and PKC1 exerted differential effects on the nuclear translocation of cytoplasmic pErk1/2, a protein which maintains senescence. PKC accompanied pErk1/2 to the nucleus after freeing it from PEA-15pS104 via PKC1 and then was rapidly ubiquitinated and degraded within the nucleus. Mitogen-activated protein kinase docking motif and kinase activity of PKC were both required for pErk1/2 transport to the nucleus. Repetitive exposure of mouse skin to TPA downregulated PKC expression and increased epi-dermal and hair follicle cell proliferation. Thus, PKC downregulation is accompanied by in vivo cell proliferation, as evidenced in 7, 12-dimethylbenz(a)anthracene (DMBA)-TPA-mediated carcinogenesis. The ability of TPA to reverse senescence was further demonstrated in old HDF cells using RNA-sequencing analyses in which TPA-induced nuclear PKC degradation freed nuclear pErk1/2 to induce cell proliferation and facilitated the recovery of mitochondrial energy metabolism. Our data indicate that TPA-induced senescence reversal and carcinogenesis promotion share the same molecular pathway. Loss of PKC expression following TPA treatment reduces pErk1/2-activated SP1 biding to the p21WAF1 gene promoter, thus preventing senescence onset and overcoming G1/S cell cycle arrest in senescent cells.

      • KCI등재

        Cancer Prevention with Green Tea and Its Principal Constituent, EGCG: from Early Investigations to Current Focus on Human Cancer Stem Cells

        Fujiki, Hirota,Watanabe, Tatsuro,Sueoka, Eisaburo,Rawangkan, Anchalee,Suganuma, Masami Korean Society for Molecular and Cellular Biology 2018 Molecules and cells Vol.41 No.2

        Cancer preventive activities of green tea and its main constituent, (-)-epigallocatechin gallate (EGCG) have been extensively studied by scientists all over the world. Since 1983, we have studied the cancer chemopreventive effects of EGCG as well as green tea extract and underlying molecular mechanisms. The first part of this review summarizes groundbreaking topics with EGCG and green tea extract: 1) Delayed cancer onset as revealed by a 10-year prospective cohort study, 2) Prevention of colorectal adenoma recurrence by a double-blind randomized clinical phase II trial, 3) Inhibition of metastasis of B16 melanoma cells to the lungs of mice, 4) Increase in the average value of Young's moduli, i.e., cell stiffness, for human lung cancer cell lines and inhibition of cell motility and 5) Synergistic enhancement of anticancer activity against human cancer cell lines with the combination of EGCG and anticancer compounds. In the second part, we became interested in cancer stem cells (CSCs). 1) Cancer stem cells in mouse skin carcinogenesis by way of introduction, after which we discuss two subjects from our review on human CSCs reported by other investigators gathered from a search of PubMed, 2) Expression of stemness markers of human CSCs compared with their parental cells, and 3) EGCG decreases or increases the expression of mRNA and protein in human CSCs. On this point, EGCG inhibited self-renewal and expression of pluripotency-maintaining transcription factors in human CSCs. Human CSCs are thus a target for cancer prevention and treatment with EGCG and green tea catechins.

      • KCI등재

        Regulations of Reversal of Senescence by PKC Isozymes in Response to 12-O-Tetradecanoylphorbol-13-Acetate via Nuclear Translocation of pErk1/2

        Lee, Yun Yeong,Ryu, Min Sook,Kim, Hong Seok,Suganuma, Masami,Song, Kye Yong,Lim, In Kyoung Korean Society for Molecular and Cellular Biology 2016 Molecules and cells Vol.39 No.3

        The mechanism by which 12-O-tetradecanoylphorbol-13-acetate (TPA) bypasses cellular senescence was investigated using human diploid fibroblast (HDF) cell replicative senescence as a model. Upon TPA treatment, protein kinase C (PKC) ${\alpha}$ and $PKC{\beta}1$ exerted differential effects on the nuclear translocation of cytoplasmic pErk1/2, a protein which maintains senescence. $PKC{\alpha}$ accompanied pErk1/2 to the nucleus after freeing it from $PEA-15pS^{104}$ via $PKC{\beta}1$ and then was rapidly ubiquitinated and degraded within the nucleus. Mitogen-activated protein kinase docking motif and kinase activity of $PKC{\alpha}$ were both required for pErk1/2 transport to the nucleus. Repetitive exposure of mouse skin to TPA downregulated $PKC{\alpha}$ expression and increased epidermal and hair follicle cell proliferation. Thus, $PKC{\alpha}$ downregulation is accompanied by in vivo cell proliferation, as evidenced in 7, 12-dimethylbenz(a)anthracene (DMBA)-TPA-mediated carcinogenesis. The ability of TPA to reverse senescence was further demonstrated in old HDF cells using RNA-sequencing analyses in which TPA-induced nuclear $PKC{\alpha}$ degradation freed nuclear pErk1/2 to induce cell proliferation and facilitated the recovery of mitochondrial energy metabolism. Our data indicate that TPA-induced senescence reversal and carcinogenesis promotion share the same molecular pathway. Loss of $PKC{\alpha}$ expression following TPA treatment reduces pErk1/2-activated SP1 biding to the $p21^{WAF1}$ gene promoter, thus preventing senescence onset and overcoming G1/S cell cycle arrest in senescent cells.

      • KCI등재

        Cancer Prevention with Green Tea and Its Principal Constituent, EGCG: from Early Investigations to Current Focus on Human Cancer Stem Cells

        Hirota Fujiki,Tatsuro Watanabe,Eisaburo Sueoka,Anchalee Rawangkan,Masami Suganuma 한국분자세포생물학회 2018 Molecules and cells Vol.41 No.2

        Cancer preventive activities of green tea and its main con-stituent, (-)-epigallocatechin gallate (EGCG) have been extensively studied by scientists all over the world. Since 1983, we have studied the cancer chemopreventive effects of EGCG as well as green tea extract and underlying molecular mechanisms. The first part of this review summarizes ground-breaking topics with EGCG and green tea extract: 1) Delayed cancer onset as revealed by a 10-year prospective cohort study, 2) Prevention of colorectal adenoma recurrence by a double-blind randomized clinical phase II trial, 3) Inhibition of metastasis of B16 melanoma cells to the lungs of mice, 4) Increase in the average value of Young's moduli, i.e., cell stiffness, for human lung cancer cell lines and inhibition of cell motility and 5) Synergistic enhancement of anticancer activity against human cancer cell lines with the combination of EGCG and anticancer compounds. In the second part, we became interested in cancer stem cells (CSCs). 1) Cancer stem cells in mouse skin carcinogenesis by way of introduction, after which we discuss two subjects from our review on human CSCs reported by other investigators gathered from a search of PubMed, 2) Expression of stem-ness markers of human CSCs compared with their parental cells, and 3) EGCG decreases or increases the expression of mRNA and protein in human CSCs. On this point, EGCG inhibited self-renewal and expression of pluripotency-maintaining transcription factors in human CSCs. Human CSCs are thus a target for cancer prevention and treatment with EGCG and green tea catechins.

      • KCI등재

        Inhibition of TNFα-interacting protein α (Tipα)-associated gastric carcinogenesis by BTG2/TIS21 via downregulating cytoplasmic nucleolin expression

        preethi devanand,Yukiko Oya,santhoshkumarsundaramoorthy,송계용,Tatsuro Watanabe,Yasuhito Kobayashi,Yoshihiko Shimizu,홍순억,Masami Suganuma,임인경 생화학분자생물학회 2018 Experimental and molecular medicine Vol.50 No.-

        To understand the regulation of Helicobacter pylori (H. pylori)-associated gastric carcinogenesis, we examined the effect of B-cell translocation gene 2 (BTG2) expression on the biological activity of Tipα, an oncoprotein secreted from H. pylori. BTG2, the human ortholog of mouse TIS21 (BTG2/TIS21), has been reported to be a primary response gene that is transiently expressed in response to various stimulations. Here, we report that BTG2 is constitutively expressed in the mucous epithelium and parietal cells of the gastric gland in the stomach. Expression was increased in the mucous epithelium following H. pylori infection in contrast to its loss in human gastric adenocarcinoma. Indeed, adenoviral transduction of BTG2/TIS21 significantly inhibited Tipα activity in MKN-1 and MGT-40, human and mouse gastric cancer cells, respectively, thereby downregulating tumor necrosis factor-α (TNFα) expression and Erk1/2 phosphorylation by reducing expression of nucleolin, a Tipα receptor. Chromatin immunoprecipitation proved that BTG2/TIS21 inhibited Sp1 expression and its binding to the promoter of the nucleolin gene. In addition, BTG2/TIS21 expression significantly reduced membrane-localized nucleolin expression in cancer cells, and the loss of BTG2/TIS21 expression induced cytoplasmic nucleolin availability in gastric cancer tissues, as evidenced by immunoblotting and immunohistochemistry. Higher expression of BTG2 and lower expression of nucleolin were accompanied with better overall survival of poorly differentiated gastric cancer patients. This is the first report showing that BTG2/TIS21 inhibits nucleolin expression via Sp1 binding, which might be associated with the inhibition of H. pylori-induced carcinogenesis. We suggest that BTG2/TIS21 is a potential inhibitor of nucleolin in the cytoplasm, leading to inhibition of carcinogenesis after H. pylori infection.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼