RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        New Mg0.5CoxZn0.5xFe2O4 nano-ferrites: Structural elucidation and electromagnetic behavior evaluation

        Maria Yousaf Lodhi,Khalid Mahmood,Azhar Mahmood,Huma Malik,Muhammad Farooq Warsi,Imran Shakir,M. Asghar,Muhammad Azhar Khan 한국물리학회 2014 Current Applied Physics Vol.14 No.5

        In this work cobalt substituted magnesium zinc nanocrystalline spinel ferrites having general formula Mg0.5CoxZn0.5xFe2O4 where x ¼ 0.1, 0.2, 0.3, 0.4, 0.5 were synthesized using micro-emulsion technique. The Co substituted samples annealed at 700 C and characterized by various characterization techniques, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), dielectric measurements and vibrating sample magnetometer (VSM). XRD analysis confirmed single phase spinel structure and the crystalline size calculated by Scherrer’s formula found to be in 21.38e45.5 nm range. The lattice constant decreases as substitution of Co is increased. The decrease in lattice constant is attributed to the smaller ionic radius of cobalt as compared to zinc ion. The FTIR spectra reveled two prominent frequency bands in the wave number range 400e600 cm1 which confirm the cubic spinel structure and completion of chemical reaction. The dielectric parameters were observed to decrease with the increased Co contents. The peaking behavior was observed beyond 1.8 GHz. The frequency dependent dielectric properties of all these nanomaterials have been explained qualitatively in accordance with Koop’s phenomenological theory. Magnetic studies revealed that the coercivity (Hc) attains maximum value of 818 Oe at w21 nm. The increasing trend of magnetic parameters (coercivity and retentivity) is consistent with crystallinity. The crystallite size is small enough to attain considerable signal to noise ratio in high density recording media. The optimized magnetic parameters suggest that the material with composition Mg0.5Co0.5Fe2O4 may have potential applications in high density recording media.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼