RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Combined effect of CYP1B1, COMT, GSTP1, and MnSOD genotypes and risk of postmenopausal breast cancer

        Jasmina-Ziva Cerne,Maja Pohar-Perme,Srdjan Novakovic,Snjezana Frkovic-Grazio4,Vida Stegel,Ksenija Gersak 대한부인종양학회 2011 Journal of Gynecologic Oncology Vol.22 No.2

        Objective: Estrogen plays a key role in breast cancer development and functionally relevant genetic variants within the estrogen metabolic pathway are prime candidates for a possible association with breast cancer risk. We investigated the independent and the combined effects of commonly occurring polymorphisms in four genes encoding key proteins of estrogen metabolic pathway on their potential contribution to breast cancer risk. Methods: We studied 530 breast cancer cases and 270 controls of the same age and ethnicity participating in a case-control study of postmenopausal women. Genotyping was conducted for CYP1B1 (rs1056836), COMT (rs4680), GSTP1 (rs1695), and MnSOD (rs4880) polymorphisms by polymerase chain reaction based restriction fragment length polymorphism and TaqMan allelic discrimination method. Adjusted ORs and 95% CIs were calculated using logistic regression. Results: None of the 4 genetic variants examined contributed to breast cancer risk individually. When the combined effects of the risk genotypes were investigated, significant associations were observed among women with two high-risk genotypes in CYP1B1 and COMT (OR, 2.0; 95% CI, 1.1 to 3.5) and two high-risk genotypes in COMT and MnSOD (OR, 2.0; 95% CI, 1.0 to 3.8), compared to those with low-risk genotypes. Conclusion: Our results suggest that individual susceptibility to breast cancer incidence may be increased by combined effects of the high-risk genotypes in CYP1B1, COMT, and MnSOD estrogen metabolic genes. Objective: Estrogen plays a key role in breast cancer development and functionally relevant genetic variants within the estrogen metabolic pathway are prime candidates for a possible association with breast cancer risk. We investigated the independent and the combined effects of commonly occurring polymorphisms in four genes encoding key proteins of estrogen metabolic pathway on their potential contribution to breast cancer risk. Methods: We studied 530 breast cancer cases and 270 controls of the same age and ethnicity participating in a case-control study of postmenopausal women. Genotyping was conducted for CYP1B1 (rs1056836), COMT (rs4680), GSTP1 (rs1695), and MnSOD (rs4880) polymorphisms by polymerase chain reaction based restriction fragment length polymorphism and TaqMan allelic discrimination method. Adjusted ORs and 95% CIs were calculated using logistic regression. Results: None of the 4 genetic variants examined contributed to breast cancer risk individually. When the combined effects of the risk genotypes were investigated, significant associations were observed among women with two high-risk genotypes in CYP1B1 and COMT (OR, 2.0; 95% CI, 1.1 to 3.5) and two high-risk genotypes in COMT and MnSOD (OR, 2.0; 95% CI, 1.0 to 3.8), compared to those with low-risk genotypes. Conclusion: Our results suggest that individual susceptibility to breast cancer incidence may be increased by combined effects of the high-risk genotypes in CYP1B1, COMT, and MnSOD estrogen metabolic genes.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼