RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Failure Mechanisms and Rehabilitation Scenarios for Concrete Hydroelectric Facilities Affected by Alkali–Aggregate Reaction

        Mahdi Ben Ftima,Emre Yildiz 한국콘크리트학회 2023 International Journal of Concrete Structures and M Vol.17 No.5

        This work focuses on the failure mechanisms of concrete hydroelectric facilities affected by alkali–aggregate reaction (AAR). Identification of potential failure mechanisms is based on an original “top-down approach” using an AAR pushover analysis with multi-physics numerical simulation of a representative hydroelectric facility. Different global rehabilitation scenarios based on slot-cutting and grouting techniques are discussed and compared, using different performance metrics. A new quantitative performance metric, specifically developed for the nonlinear sophisticated analysis tool and considering the volumetric cracking caused by AAR is also suggested. Based on comparison results, a combination of grouting after a partial slot-cutting in the neighborhood of the discontinuities, appears to provide the best compromise in terms of stress relief and extent of cracking. New AAR benchmark problems, issued from the top-down approach, are also suggested for the first time in the literature.

      • New reliability framework for assessment of existing concrete bridge structures

        Mahdi Ben Ftima,Bruno Massicotte,David Conciatori 국제구조공학회 2024 Structural Engineering and Mechanics, An Int'l Jou Vol.89 No.4

        Assessment of existing concrete bridges is a challenge for owners. It has greater economic impact when compared to designing new bridges. When using conventional linear analyses, judgment of the engineer is required to understand the behavior of redundant structures after the first element in the structural system reaches its ultimate capacity. The alternative is to use a predictive tool such as advanced nonlinear finite element analyses (ANFEA) to assess the overall structural behavior. This paper proposes a new reliability framework for the assessment of existing bridge structures using ANFEA. A general framework defined in previous works, accounting for material uncertainties and concrete model performance, is adapted to the context of the assessment of existing bridges. A “shifted” reliability problem is defined under the assumption of quasi-deterministic dead load effects. The overall exercise is viewed as a progressive pushover analysis up to structural failure, where the actual safety index is compared at each event to a target reliability index.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼