RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Real-time regulated sliding mode controller design of multiple manipulator space free-flying robot

        Hamid Khaloozadeh,M. Reza Homaeinejad 대한기계학회 2010 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.24 No.6

        The problem of controlling Space Free-flying Robots (SFFRs), which have many degrees of freedom caused by their mechanical manipulators,is challenging because of the strong nonlinearities and their heavy computational burden for the implementation of modelbased control algorithms. In this paper, a chattering avoidance sliding mode controller is developed for SFFR as highly nonlinear-coupled systems. To fulfill stability requirements, robustness properties, and chattering elimination, a regulating routine is proposed to determine the proper positive values for the coefficient of sliding condition. To solve the run-time problem, an explicit direct relationship between the SFFR’s output of actuators (force/torque) and the measurement of distances from the corresponding sliding surfaces is also assumed. To reach perfect performance, the parameters are estimated recursively using the Kalman filter as a parameter estimator. The explicit dynamics of a 14-DOF SFFR is derived using SPACEMAPLE, and the recursive prediction error method (RPEM) is used to parameterize the SFFR model. To alleviate the chattering trend, a multi-input sliding mode control law is proposed and applied to the given SFFR based on the online estimated dynamics to control its orientation and position to catch a moving target. To evaluate the new proposed algorithm in a more complicated condition, only on–off actuators are assumed for controlling the base of SFFR because it is the case in real systems. The obtained results show that the proposed regulated sliding mode controller can significantly reduce the chattering trend. Consequently, energy consumption will be substantially decreased, and running the control algorithm will be within a reasonable time duration.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼