RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Fundamental period estimation of steel frames equipped with steel panel walls

        Liqiang Jiang,Xingshuo Zhang,Lizhong Jiang,Chang He,Jihong Ye,Yu Ran 국제구조공학회 2021 Structural Engineering and Mechanics, An Int'l Jou Vol.78 No.6

        Steel frames equipped with beam-only-connected steel panel wall (SPWF) system is one type of lateral resisting systems. The fundamental period is necessary to calculate the lateral force for seismic design, however, almost no investigations have been reported for the period estimation of SPWF structures, both in theoretically and in codes. This paper proposes a simple theoretical method to predict the fundamental periods of the SPWF structures based on the basic theory of engineering mechanics. The proposed method estimates the SPWF structures as a shear system of steel frames and a shear-flexure system of SPWs separately, and calculates the fundamental periods of the SPWF structures according to the integration of lateral stiffness of the steel frames and the SPWs along the height. Finite element method (FEM) is used to analyze the periods of 45 case steel frames or SPWF buildings with different configurations, and the FEM is validated by the test results of four specimens. The errors cannot be ignored between FEM and theoretical results due to the simplifications. Thus the finial formula is proposed by correcting the theoretical equations. The relative errors between the periods predicted from the final proposed formula and the results of FEM are no more than 4.6%. The proposed formula could be reliably used for fundamental period estimation of new, existing and damaged SPWF buildings.

      • KCI등재

        A Mean Field Game-Theoretic Cross-Layer Optimization for Multi-Hop Swarm UAV Communications

        Tong Li,Cong Li,Chungang Yang,Junqi Shao,Yue Zhang,Lei Pang,Lizhong Chang,Lingli Yang,Zhu Han 한국통신학회 2022 Journal of communications and networks Vol.24 No.1

        Unmanned aerial vehicle (UAV) multi-hop communicationnetworks are foreseen to be widely employed inboth military and civilian scenarios. However, in ultra-densescenarios with swarm UAVs, nodes are highly dynamic mobile,ultra-dense deployment and non-centralized distribution. Thesecharacteristics make the centralized resource management policynot apply. Meanwhile, existing routing protocols can’t meetthe performance challenges of high dynamic, topology and linkfrequency changes of ultra-dense scenarios with swarm UAVs. Tosolve the above challenges of resource management and routingprotocol, a cross-layer optimization method is presented witha novel mean field game (MFG) in this paper. It is based onthe cross-layer design method of the MFG theory and jointlyconsiders the power resources in the physical layer, frequencyresources in the medium access control (MAC) layer, and routingresources in the network layer. By dividing into subproblems,the original problem is solved. Meanwhile, the optimal datatransmission path can be selected through the management andallocation of frequency resources and power resources. A crosslayerresource management dynamic source routing (CLRMDSR)protocol is designed based on that which adds link qualitymeasurement. The simulation results show that the presentedCLRM-DSR with the proposed resource management schemecan improve the data packet transmission rate, reduce end-toenddelay, and lower routing overhead for the multi-hop swarmUAV communication network.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼