RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Identification of novel alleles induced by EMS-mutagenesis in key genes of kernel hardness and starch biosynthesis in wheat by TILLING

        Wenjie Li,Huijun Guo,Yongbin Wang,Yongdun Xie,Linshu Zhao,Jiayu Gu,Shirong Zhao,Baocun Zhao,Guangjin Wang,Luxiang Liu 한국유전학회 2017 Genes & Genomics Vol.39 No.4

        To identify novel allelic variations in key genes of wheat quality, the present study used the targeting induced local lesions in genomes platform to detect point mutations in target genes. The wheat variety Longfumai 17 was treated by the mutagen ethyl methanesulfonate to produce a bulk M2 generation, and the population included 1122 plants. A total length of 3906.80 kb nucleotides was analyzed, and the average mutation density was 1/244.17 kb. The identified mutations included G>A substitutions (43.75%), C>T substitutions (31.25%), A insertions (12.50%), T insertions (6.25%), and deletions (6.25%). These point mutations led to changes in amino acids and thus the encoded protein sequences, ultimately producing 18.75% of missense mutations, 12.50% of frame shift mutations, 6.25% of nonsense mutations, 25.00% of silent mutations and 37.50% of non-coding region mutations. In the kernel hardness gene Pinb and 3 starch synthesis genes waxy, Agp2 and SSIIa-A, we detected 16 different point mutations in 25 mutant lines. The Pinb gene harbored two missense mutations and a nonsense mutation; the C>T missense mutation resulted in a novel allele, this novel allele and the nonsense mutation alerted protein 3D structure; the waxy gene presented missense and frame shift mutations; the Agp2 gene carried a missense mutation; the SSIIa-A incurred a missense mutation and a frame shift mutation that resulted in premature protein termination. All the frame shift mutations, nonsense mutations and the Pinb novel allele resulted in allelic variation of their corresponding genes, which in turn affected their gene functions. The identified mutant lines can be used as intermediate materials in wheat quality improvement schemes.

      • KCI등재

        Effects of Lonicera japonica extract on performance, blood biomarkers of inflammation and oxidative stress during perinatal period in dairy cows

        Zhao Yiguang,Tang Zhiwen,Nan Xuemei,Sun Fuyu,Jiang Linshu,Xiong Benhai 아세아·태평양축산학회 2020 Animal Bioscience Vol.33 No.7

        Objective: An experiment was conducted to evaluate the effects of Lonicera japonica extract (LJE) on milk production, rumen fermentation and blood biomarkers of energy metabolism, inflammation and oxidative stress during the perinatal period of Holstein dairy cows. Methods: Eighteen Holstein dairy cows were used in a complete randomized design experiment with 3 dietary treatments and 6 cows per treatment. All cows received the same basal total mixed ration (TMR) including a prepartal diet (1.35 Mcal of net energy for lactation [NEL]/kg of dry matter [DM], 13.23% crude protein [CP]) from –60 d to calving and a postpartal diet (1.61 Mcal of NEL/kg of DM, 17.39% CP) from calving to 30 days in milk (DIM). The 3 dietary treatments were TMR supplemented with LJE at 0 (control), 1 and 2 g/kg DM, respectively. LJE was offered from 21 d before calving to 30 DIM. Dry matter intake (DMI) and milk production were measured daily after calving. Milk and rumen fluid samples were collected on 29 and 30 d after calving. On –10, 4, 14, and 30 d relative to calving, blood samples were collected to analyze the biomarkers of energy metabolism, inflammation and oxidative stress. Results: Compared with control diet, LJE supplementation at 1 and 2 g/kg DM increased DMI, milk yield and reduced milk somatic cell count. LJE supplementation also decreased the concentrations of blood biomarkers of pro-inflammation (interleukin-1β [IL-1β], IL-6, and haptoglobin), energy metabolism (nonesterified fatty acid and β-hydroxybutyric acid) and oxidative stress (reactive oxygen metabolites), meanwhile increased the total antioxidant capacity and superoxide dismutase concentrations in blood. No differences were observed in rumen pH, volatile fatty acid, and ammonia-N (NH3-N) concentrations between LJE supplemented diets and the control diet. Conclusion: Supplementation with 1 and 2 g LJE/kg DM could increase DMI, improve lactation performance, and enhance anti-inflammatory and antioxidant capacities of dairy cows during perinatal period.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼