RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Biomechanical Study of Cervical Endplate Removal on Subsidence and Migration in Multilevel Anterior Cervical Discectomy and Fusion

        Lin Maohua,Paul Rudy,Shapiro Stephen Z.,Doulgeris James,O’Connor Timothy E.,Tsai Chi-Tay,Vrionis Frank D. 대한척추외과학회 2022 Asian Spine Journal Vol.16 No.5

        Study Design: This study compares four cervical endplate removal procedures, validated by finite element models.Purpose: To characterize the effect of biomechanical strength and increased contact area on the maximum von Mises stress, migration, and subsidence between the cancellous bone, endplate, and implanted cage.Overview of Literature: Anterior cervical discectomy and fusion (ACDF) has been widely used for treating patients with degenerative spondylosis. However, no direct correlations have been drawn that incorporate the impact of the contact area between the cage and the vertebra/endplate.Methods: Model 1 (M1) was an intact C2C6 model with a 0.5 mm endplate. In model 2 (M2), a cage was implanted after removal of the C4–C5 and C5–C6 discs with preservation of the osseous endplate. In model 3 (M3), 1 mm of the osseous endplate was removed at the upper endplate. Model 4 (M4) resembles M3, except that 3 mm of the osseous endplate was removed.Results: The range of motion (ROM) at C2C6 in the M2–M4 models was reduced by at least 9º compared to the M1 model. The von Mises stress results in the C2C3 and C3C4 interbody discs were significantly smaller in the M1 model and slightly increased in the M2–M3 and M3–M4 models. Migration and subsidence decreased from the M2–M3 model, whereas further endplate removal increased the migration and subsidence as shown in the transition from M3 to M4.Conclusions: The M3 model had the least subsidence and migration. The ROM was higher in the M3 model than the M2 and M4 models. Endplate preparation created small stress differences in the healthy intervertebral discs above the ACDF site. A 1 mm embedding depth created the best balance of mechanical strength and contact area, resulting in the most favorable stability of the construct.

      • KCI등재

        A Review of Finite Element Modeling for Anterior Cervical Discectomy and Fusion

        Lin Maohua,Paul Rudy,Dhar Utpal Kanti,Doulgeris James,O’Connor Timothy E.,Tsai Chi-Tay,Vrionis Frank D. 대한척추외과학회 2023 Asian Spine Journal Vol.17 No.5

        The cervical spine poses many complex challenges that require complex solutions. Anterior cervical discectomy and fusion (ACDF) has been one such technique often employed to address such issues. In order to address the problems with ACDF and assess the modifications that have been made to the technique over time, finite element analyses (FEA) have proven to be an effective tool. The variations of cervical spine FEA models that have been produced over the past couple of decades, particularly more recent representations of more complex geometries, have not yet been identified and characterized in any literature. Our objective was to present material property models and cervical spine models for various simulation purposes. The outlining and refinement of the FEA process will yield more reliable outcomes and provide a stable basis for the modeling protocols of the cervical spine.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼